SUMMATIVE ASSESSMENT - II
 MATHEMATICS / गणित
 Class - IX / कक्षा - IX

निर्धारित समय :3-3 $1 \frac{1}{2}$ घण्टे
Time allowed : 3-3 $1 / 2$ hours

अधिकतम अंक : 100
Maximum Marks : 100

सामान्य निर्देश :

(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 32 प्रश्न हैं, जिन्हें पाँच खण्डों अ, ब, स, द तथा य में बांटा गया है। खण्ड-अ में 4 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड-ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड-स में 10 प्रश्न हैं जिनमें प्रत्येक के $\mathbf{3}$ अंक हैं, खण्ड-द में 11 प्रश्न हैं जिनमें प्रत्येक के $\mathbf{4}$ अंक हैं तथा खण्ड-य का प्रश्न मुक्त पाठ्य प्रकरण पर आधारित दस अंकों का है ।
(iii) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है।
(v) कैलकुलेटर का प्रयोग वर्जित है।

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of $\mathbf{3 2}$ questions divided into five sections A, B, C, D and E. Section-A comprises of $\mathbf{4}$ questions of $\mathbf{1}$ mark each, Section-B comprises of $\mathbf{6}$ questions of $\mathbf{2}$ marks each, Section-C comprises of $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section-D comprises of 11 questions of 4 marks each. Section E comprises of one question from Open Text theme of $\mathbf{1 0}$ marks.
(iii) There is no overall choice.
(iv) Use of calculator is not permitted.

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।
Question numbers $\mathbf{1}$ to $\mathbf{4}$ carry one mark each

यदि $2 x+k y=10, y$-अक्ष को $(0,2)$ पर प्रतिच्छेद करती है, तो k का मान ज्ञात कीजिए। If $2 x+k y=10$, intersests y-axis at $(0,2)$, then find k.

कुछ देशों में तापमान को फारेनहाइट में मापा जाता है, जबकि भारत जैसे देश में तापमान सेल्सियस में मापा 1 जाता है। यहाँ फारेनहाइट को सेल्सियस में रूपान्तरित करने वाला एक रैखिक समीकरण दिया गया है :
$F=\left(\frac{9}{5}\right) C+32$
यदि तापमान $-40^{\circ} \mathrm{C}$ हो, तो फारेनहाइट में तापमान क्या होगा ?
In some countries temperature is measured in Fahrenheit, whereas in countries like India it is measured in Celsius. Here is a linear equation that converts Fahrenheit to Celsius :
$F=\left(\frac{9}{5}\right) C+32$.
If the temperature is $-40^{\circ} \mathrm{C}$, then what is the temperature in Fahrenheit?

किसी समांतर चतुर्भुज के दो क्रमागत कोण $(x+60)^{\circ}$ और $(2 x+30)^{\circ}$ हैं। इस समांतर चतुर्भुज को आप क्या विशेष 1 नाम दे सकते हैं ?

Two consecutive angles of a parallelogram are $(x+60)^{\circ}$ and $(2 x+30)^{\circ}$. What special name can you give to this parallelogram?

त्रिज्या 2 r वाले गोले का आयतन ज्ञात कीजिए।
Calculate the volume of a sphere with radius 2 r.

खण्ड-ब / SECTION-B

Question numbers 5 to 10 carry two marks each.
$W X Y Z$ एक समांतर चतुर्भुज है जिसमें $\mathrm{XP} \perp \mathrm{WZ}$ और $\mathrm{ZQ} \perp \mathrm{WX}$ है। यदि $\mathrm{WX}=8 \mathrm{~cm}, \mathrm{XP}=8 \mathrm{~cm}$ और $\mathrm{ZQ}=2 \quad 2$ cm है, तो YX ज्ञात कीजिए।

$W X Y Z$ is a parallelogram with $X P \perp W Z$ and $Z Q \perp W X$. If $W X=8 \mathrm{~cm}$,
$X P=8 \mathrm{~cm}$ and $Z Q=2 \mathrm{~cm}$, find $Y X$.

यदि केंद्र O वाले वृत्त का एक व्यास AB दो जीवाओं CD और EF में से प्रत्येक को समद्विभाजित करता है, जैसा कि 2 आकृति में दर्शाया गया है, तो सिद्ध कीजिए कि दोनों जीवाएँ समांतर है।

If a diameter $A B$ of a circle with centre O bisects each of the two chords $C D$ and $E F$ as shown in the figure. Prove that the two chords are parallel.

$5 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}$ विमाओं वाले घनाभ में से 2 cm भुजा कितने घन काटे जा सकते हैं।
Find the number of cubes of side 2 cm that can be cut from a cuboid of dimensions $5 \mathrm{~cm} \times 4$ $\mathrm{cm} \times 2 \mathrm{~cm}$.

किसी विशेष वर्ग का वर्ग चिह्न 6.5 है तथा उसकी वर्ग माप 3 है। अगले तीन वर्ग लिखिए, यदि वे संतत हैं।
The class mark of a particular class is 6.5 and its class size is 3 . Write the next 3 classes. If they are continuous.

जैसमीन के पास एक मिठाई वाला डिब्बा है, जिसमें 3 पीली, 5 हरी, 7 लाल, 2 4 बैंगनी और 1 काली मिठाई है। उसने एक मिठाई निकाली, तो कौन-सी मिठाई निकालने की प्रायिकता $\frac{1}{4}$ है।

Jasmine has a bag of sweets, which has 3 yellow sweets, 5 green sweets, 7 red sweets, 4 purple sweets and 1 black sweets.

If Jasmine takes out one sweet, find the colour of the sweet which has $\frac{1}{4}$ probability.

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का 3 अंक है।
Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.
$A B C D$ एक समचतुर्भुज है। इसकी एक भुजा का समीकरण $x+2 y=4$ है। इस भुजा को पहचानिए और 3 अपने उत्तर की पुष्टि के लिए संगत कारण दीजिए।
$A B C D$ is a rhombus. Equation of one of its side is $x+2 y=4$. Identity that side give reason to support your answer.

निम्नलिखित दो चर वाले रैखिक समीकरण का आलेख खींचिए :
$5 x-y=2$
Draw graph of following equation in two variables :
$5 x-y=2$

एक त्रिभुज PQR के शीर्षों P, Q, और R से होकर क्रमशः भुजाओं QR, PR और PQ के समांतर रेखाएँ खींची जाती हैं; जिससे आकृति में दर्शाए अनुसार एक $\triangle \mathrm{ABC}$ बनता है। दर्शाइए कि $\triangle \mathrm{PQR}$ का परिमाप $\triangle \mathrm{ABC}$ के परिमाप का आधा है।

Lines are drawn through vertices P, Q and R of a $\triangle \mathrm{PQR}$ parallel respectively to the sides QR , $P R$ and $P Q$, forming $\triangle A B C$ as shown in figure. Show that the perimeter of $\triangle P Q R$ is equal to half the perimeter of $\triangle \mathrm{ABC}$.

$\triangle \mathrm{AJK}$ की रचना कीजिए जिसमें $\mathrm{JK}=8 \mathrm{~cm}, \angle \mathrm{~J}=60^{\circ}$ और $\mathrm{AJ}-\mathrm{AK}=1.5 \mathrm{~cm}$ है।
Construct $\triangle \mathrm{AJK}$ in which $\mathrm{JK}=8 \mathrm{~cm}, \angle \mathrm{~J}=60^{\circ}$ and $\mathrm{AJ}-\mathrm{AK}=1.5 \mathrm{~cm}$.

एक त्रिभुज ABC की रचना कीजिए, जिसमें आधार $\mathrm{AC}=7 \mathrm{~cm}$ और अन्य दो भुजाएँ $\mathrm{AB}+\mathrm{BC}=8.6 \mathrm{~cm}$ और 3 आधार कोण 120° है।
Construct a triangle $A B C$, given base $A C=7 \mathrm{~cm}$ and sum of two other sides $A B+B C=8.6 \mathrm{~cm}$ and base angle is 120°.

एक समद्विबाहु त्रिभुज की रचना कीजिए, जिसकी प्रत्येक भुजा 5.2 cm है। अब किन्हीं दो कोणों के समद्विभाजक 3 खींचिए। इन दोनों का प्रतिच्छेदन बिंदु कहाँ पर स्थित हैं।
Construct an equilateral triangle of side 5.2 cm each. Now construct angle bisectors of any two angles. Their intersecting point lies where?

दी हुई आकृति में, C और D व्यास AB वाले अर्धवृत्त पर स्थित हैं। यदि $\angle \mathrm{BAD}=75^{\circ}$ और $\angle \mathrm{DBC}=40^{\circ}$ है, तो 3 $\angle \mathrm{ABD}, \angle \mathrm{ACB}$ और $\angle \mathrm{BDC}$ ज्ञात कीजिए।

In the given figure, C and D are points on the semicircle with AB as diameter. If $\angle \mathrm{BAD}=75^{\circ}$ and $\angle \mathrm{DBC}=40^{\circ}$, find $\angle \mathrm{ABD}, \angle \mathrm{ACB}$ and $\angle \mathrm{BDC}$.

चावल की एक ढेरी 2.1 m त्रिज्या तथा 2.8 m ऊँचाई वाले एक शंकु के आकार की है। इस ढेरी को वर्षा से बचाने 3 के लिए केनवस से पूरा ढकना हो, तो केनवस का क्षेत्रफल ज्ञात कीजिए।

A heap of paddy is in the form of a cone whose radius is 2.1 m and height is 2.8 m . If the heap is to be covered exactly by a canvas to protect it from rain, then find the area of the canvas required.

1500 परिवारों का एक सर्वे किया गया तथा उनके घर पर काम करने वाली नौकरानियों के बारे में निम्न आँकड़े रिकार्झे किए गए :

| नौकरानियों के प्रकार | केवल कुछ समय | केवल पूरे समय के | दोनों |
| :--- | :--- | :--- | :--- | :--- |

	के लिए	लिए	
नौकरानियों की संख्या	860	370	250

इनमें से एक परिवार को यादृच्छिक रूप से चुना जाता है। इसकी प्रायिकता ज्ञात कीजिए कि चुने हुए परिवार में हैं :
(a) दोनों प्रकार की नौकरानियाँ
(b) कुछ समय के लिए नौकरानियाँ
(c) कोई नौकरानी नहीं

1500 families were surveyed and following data was recorded about their maids at homes :

Types of maids	Only part - time	Only full - time	Both
Nos. of maids	860	370	250

A family is selected at random. Find the probability that the family selected has :
(a) both types of maids
(b) has part - time maids
(c) has no maids

24 के सभी धनात्मक गुणनखण्डों का माध्य और माध्यक ज्ञात कीजिए।
Find the mean and median of all the positive factors of 24 .

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers 21 to 31 carry four marks each.

किसी चतुर्भुज के कोण $5 x+50^{\circ}, 4 x+60^{\circ}, 6 y+60^{\circ}$ और $3 y+100^{\circ}$ हैं। इन आँकड़ों को संतुष्ट करने वाली एक 4 समीकरण लिखिए। इसके लिए आलेख भी खींचिए।

Angles of a quadrilateral are $5 x+50^{\circ}, 4 x+60^{\circ}, 6 y+60^{\circ}$ and $3 y+100^{\circ}$. Write a linear equation which satisfies this data. Draw the graph for the same.

दो टीमों के बीच एक मैत्रीपूर्ण क्रिकेट मैच आयोजित किया जा रहा है। इस मैच से प्राप्त होने वाली धनराशि को विकलांग बच्चों के हेतु बने 'धर्मार्थ अस्पताल' की सहायता के लिए दे दिया जाएगा। खेल का मैदान वृत्ताकार है, जिसमें, आकृति में दर्शाए अनुसार, दर्शकों के लिए एक एक समान चौड़ाई का वलय छोड़ा गया है। यदि O मैदान का केन्द्र है तथा एक सरल रेखा में स्थित बिन्दुओं $\mathrm{A}, \mathrm{B}, \mathrm{C}$ और D पर चार स्तंभ गाड़े जाते हैं, तो सिद्ध कीजिए कि $\mathrm{AB}=\mathrm{CD}=\frac{1}{2}(\mathrm{AD}-\mathrm{BC})$ है। इस प्रश्न के द्वारा कौन से मूल्य को बढ़ावा दिया जा रहा है ?

A friendly cricket match is being organized between two teams. The proceeds of this match will be given for the aid to the 'Charitable Hospital' for handicapped children. The field is circular with a ring of uniform width as shown in the figure for spectators. If O is the centre of the field and four poles are fixed at points A, B, C and D lying in a straights line. Prove that $A B=C D=\frac{1}{2}(A D-B C)$. Which value is promoted through this question?

ABCD एक समलम्ब है जिसमें $\mathrm{AB} \| \mathrm{DC}$ है। भुजाओं AD और BC के मध्य-बिंदु क्रमश: 4 X और Y हैं। यदि $C D=30 ~ c m ~ औ र ~ A B ~=50 ~ c m ~ ह ो, ~ त ो ~ द र ् श ा इ ए ~ क ि ~$ $\operatorname{ar}(\mathrm{DCYX})=\frac{7}{9} \operatorname{ar}(X Y B A)$ हैं।

$A B C D$ is a trapezium with $A B \| D C . X$ and Y are mid-points of sides $A D$ and $B C$ respectively.
If $C D=30 \mathrm{~cm}$ and $A B \quad=50$ smow that $\operatorname{ar}(\mathrm{DCYX})=\frac{7}{9} \operatorname{ar}(\mathrm{XYBA})$

$25 A B C D$ एक वर्ग है। $A B$ का मध्य-बिंदु M है तथा $C M \perp P Q$ है, जैसा कि आकृति में दर्शाया गया है, दर्शाइए कि 4 $C P=C Q$ है।

$A B C D$ is a square. M is the mid - point of $A B$ and $C M \perp P Q$ as shown in the figure. Show that $C P=C Q$.

कोई न्यून कोण बनाइए। रूलर और परकार की सहायता से इसके चार समान भाग कीजिए। कोणमापक की सहायता से 4 इनको मापिए।

Draw any acute angle. Divide it into four equal parts using ruler and compass. Measure them using protractor.

दो शंक्वाकार खिलौनों की त्रिज्याओं का अनुपात $2: 1$ है तथा उनके आयतन समान हैं। उनकी ऊँचाइयों में अनुपात 4 ज्ञात कीजिए।

The radii of two toy cones are in the ratio $2: 1$, their volumes are equal. Find the ratio of their heights.

एक लंब वृत्तीय बेलन में संपूर्ण पृष्ठीय क्षेत्रफल और वक्र पृष्ठीय क्षेत्रफल का अनुपात $3: 2$ है। यदि संपूर्ण पृष्ठीय 4

क्षेत्रफल $14784 \mathrm{~cm}^{2}$ हो, तो आयतन ज्ञात कीजिए।
The ratio of total surface area to the curved surface area of a right circular cylinder is $3: 2$. Find the volume if its total surface area is $14784 \mathrm{~cm}^{2}$

एक पाइप पानी से भरे हुए अर्धगोलाकार टैंक को $3 \frac{4}{7}$ लिटर प्रति सेकण्ड की गति से खाली कर रहा है। यदि टैंक की 4 त्रिज्या 1.5 m हो, तो कितने समय में टैंक आधा खाली हो जाएगा ? A pipe empties a hemispherical tank full of water at the rate of $3 \frac{4}{7}$ litres per second. How much time will it take to empty half the tank, if radius of tank is 1.5 m ?

एक कंपनी एक विशेष प्रकार कार टायर निर्मित करती है। ऐसे 40 टायरों का जीवन काल 4 (वर्षों में) नीचे दिया है :
$2.6,3.0,3.7,3.2,2.2,4.1,3.5,4.5,3.5,2.3,3.2,3.4,3.8,3.2,4.6,3.7,2.5,4.4,3.4,3.3,2.9,3.0,4.3$, $2.8,3.5,3.2,3.9,3.2,3.2,3.1,3.7,3.4,4.6,3.8,3.2,2.6,3.5,4.2,2.9,3.6$

उपरोक्त आँकड़ों के लिए, बराबर वर्गमाप के एक सतत वर्गीकृत बारंबारता बंटन की रचना कीजिए, जिसमें एक वर्ग अंतराल 2-2.5 हो और फिर एक आयतचित्र की रचना कीजिए।

A company manufactures car tyres of a particular type. The lives (in years) of 40 such tyres are as follows :
$2.6,3.0,3.7,3.2,2.2,4.1,3.5,4.5,3.5,2.3,3.2,3.4,3.8,3.2,4.6,3.7,2.5,4.4,3.4,3.3,2.9,3.0,4.3$, $2.8,3.5,3.2,3.9,3.2,3.2,3.1,3.7,3.4,4.6,3.8,3.2,2.6,3.5,4.2,2.9,3.6$

Construct a continuous grouped frequency distribution for the above data of equal class size and with first class interval as 2-2.5 and hence construct a histogram

एक सिक्के को कुछ बार उछाला जाता है। यदि एक चित प्राप्त करने की प्रायिकता 0.4 है तथा चित 24 बार आता है, तो ज्ञात कीजिए कि सिक्के को कितनी बार उछाला गया है। इससे एक पट प्राप्त करने की प्रायिकता ज्ञात कीजिए। सत्यापन कीजिए कि $\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{T})=1$ है।

A coin is tossed for a certain number of times. If the probability of getting a head is 0.4 and the head appeared up for 24 times, find the number-of times the coin was tossed. Hence, find the

ACBSE Coaching for OLathematics and Science
probability of getting a tail and verify that $\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{T})=1$

OTBA
-o000000-
http://jsuniltutorial.weebly.com/

Marking Scheme

SUMMATIVE ASSESSMENT - II

Mathematics (Class - IX)

खण्ड-अ / SECTION-A

प्रश्न संख्या 1 से 4 में प्रत्येक का 1 अंक है।
Question numbers $\mathbf{1}$ to $\mathbf{4}$ carry one mark each

1

$$
\begin{array}{r}
2(0)+2 k=10 \\
2 k=10 \\
k=5 .
\end{array}
$$

$$
\begin{aligned}
f & =\frac{9}{5}(-40)+32^{\circ} \\
& =-72+32^{\circ} \\
& =-40^{\circ} .
\end{aligned}
$$

3

4

$$
\begin{aligned}
\text { Vol } & =\frac{4}{3} \pi r^{3} \\
& =\frac{704}{21} r^{3} \mathrm{cu} . \text { units }
\end{aligned}
$$

खण्ड-ब / SECTION-B

प्रश्न संख्या 5 से 10 में प्रत्येक का 2 अंक है।
Question numbers $\mathbf{5}$ to $\mathbf{1 0}$ carry two marks each.
$44 \mathrm{~mm}=4.4 \mathrm{~cm}, 46 \mathrm{~mm}=4.6 \mathrm{~cm}$.
Now the given sides are $4.4 \mathrm{~cm}, 4.6 \mathrm{~cm}, 9.5 \mathrm{~cm}$. As by Triangle Inequality property, if the sum of the two sides of a triangle is always greater than the third side, then only a triangle can be constructed.

So, $\quad 4.4+9.5=13.9>4.6$
$4.6+9.5=14.1>4.4$
but $\quad 4.4+4.6=9<9.5$
hence it is not possible to construct a triangle.

6
Area of parallelogram $=b \times h$

$$
\begin{aligned}
\therefore \mathrm{Ar}(\mathrm{WXYZ})= & W X \times Z Q \\
& =8 \times 2 \mathrm{~cm}^{2} \\
& =16 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Also , ar } \begin{aligned}
(\mathrm{WXYZ}) & =\mathrm{ZW} \times \mathrm{XP} \\
16 & =\mathrm{ZW} \times 8
\end{aligned}
$$

$\therefore \mathrm{YX}=\mathrm{ZW}=\frac{16}{8}[\therefore \mathrm{YX}$ and ZW are opposite side of $\| \mathrm{gm}]$

$$
=2 \mathrm{~cm}
$$ mid-point of the chord is perpendicular to the chord)

$\therefore \angle \mathrm{OMD}=90^{\circ}$
Similarly OB is perpendicular to EF
$\therefore \angle \mathrm{ONE}=90^{\circ}$
$\therefore \angle \mathrm{OMD}=\angle \mathrm{ONE}$
But these are alternate interior angles
$\therefore \mathrm{CD} 2 \mathrm{EF}$

8
Side of cube $=2 \mathrm{~cm}$

Dimensions of cuboid $=5 \mathrm{~cm} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}$

Number of cubes that can be cut from the cuboid

$$
\begin{aligned}
& =\frac{\text { Volume of cuboid }}{\text { Volume of cube }} \\
& =\frac{5 \times 4 \times 2}{2 \times 2 \times 2}=5
\end{aligned}
$$

Let the lower limit be y

Upper limit be x
then, $\frac{x+y}{2}=6.5$
$\Rightarrow \quad x+y=13$
and class-size, $x-y=3$
$\Rightarrow \quad x=3+y$
$\Rightarrow \quad 3+y+y=13$
$\Rightarrow \quad 2 y=13-3$
$\Rightarrow \quad 2 y=10 \quad \Rightarrow \quad y=5$

When $y=5, x=8$ so, the class is $5-8$ Hence, next three classes $8-11,11-14$ and $14-17$

http://jsuniltutorial.weebly.com/

\therefore Desired sweet $=$ Green	$=\frac{1}{4} \times \frac{5}{5}=\frac{5}{20}$
7 Red	
4 Gurple	
1 Blue	
	20 Total

खण्ड-स / SECTION-C

प्रश्न संख्या 11 से 20 में प्रत्येक का $\mathbf{3}$ अंक है।
Question numbers $\mathbf{1 1}$ to $\mathbf{2 0}$ carry three marks each.

From the figure,
$A(0,2), B(4,0), C(0,-2), D(-4,0)$
Given equation

$$
x+2 y=4
$$

for A
$0+2,2=4$, true
for B
$4+2.0=4$, true
$0-4=4$, false
for $D \quad-4+0=-4$, fasle
So equation of line $x+2 y+4=4$ is $A B$

$$
\begin{aligned}
& 5 x-y=2 \\
& y=5 x-2
\end{aligned}
$$

x	0	2	1
y	-2	8	3

Graph

13
In $\triangle \mathrm{ABC} \quad \mathrm{PC} \| \quad \mathrm{QR}$ and $\mathrm{QC} \| \mathrm{PR}$ So, PCQR is a parallelogram Hence $\mathrm{PC}=\mathrm{QR}$. Similarly, $\mathrm{PB}=\mathrm{QR} \Rightarrow \mathrm{P}$ is the mid-point of BC .

Similarly, Q is the mid-point of AC .
$\therefore \mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AB}-$
(By mid-point theorem)
Similarly,
we can show that :
$\mathrm{QR} \| \mathrm{BC}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{BC}$
And $\mathrm{PR} \| \mathrm{AC}$ and $\mathrm{PR}=\frac{1}{2} \mathrm{AC}$
\therefore Perimeter of $\triangle \mathrm{PQR}=\mathrm{PQ}+\mathrm{QR}+\mathrm{PR}$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{AB}+\frac{1}{2} \mathrm{BC}+\frac{1}{2} \mathrm{AC} \\
& =\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{AC}) \\
& =\frac{1}{2} \times \text { Perimeter of } \triangle \mathrm{ABC}
\end{aligned}
$$

Construction (2)
Steps of construction (1)

Steps of construction (1)

Since AB is the diameter

$$
\angle \mathrm{ADB}=90^{\circ} \text { (angle in the semi circle) }
$$

In $\triangle \mathrm{ADB}$

$$
\begin{aligned}
& \angle \mathrm{ABD}+\angle \mathrm{ADB}+\angle \mathrm{BAD}=180^{\circ} \text { (angle sum property) } \\
& \angle \mathrm{ABD}+90^{\circ}+75^{\circ}=180^{\circ} \\
& \angle \mathrm{ABD}=15^{\circ} \\
& \angle \mathrm{ACB}=90^{\circ} \text { (angle in the semi circle) } \\
& \left.\angle \mathrm{BCD}+\angle \mathrm{BAD}=180^{\circ} \text { (opp. } \angle \text { s of cyclic quad. are supplementary }\right) \\
& \angle \mathrm{BCD}+75^{\circ}=180^{\circ} \\
& \angle \mathrm{BCD}=180^{\circ}-75^{\circ}=105^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{BDC}$

$$
\begin{aligned}
& \angle \mathrm{BDC}+\angle \mathrm{BCD}+\angle \mathrm{DBC}=180^{\circ} \text { (angle sum property) } \\
& \angle \mathrm{BDC}+105^{\circ}+40^{\circ}=180^{\circ} \\
& \angle \mathrm{BDC}=180^{\circ}-145^{\circ} \\
& =35^{\circ}
\end{aligned}
$$

18
$\mathrm{r}=2.1 \mathrm{~m}, \mathrm{~h}=2.8 \mathrm{~m}$
$l=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}=3.5 \mathrm{~m}$
Canvas reqd. $=\pi r l=6.6 \times 3.5$

$$
=23.1 \mathrm{~m}^{2}
$$

Total number of families $=1500$
(a) Let E_{1} be an event of selecting a family having both types of maid

No. of favorable outcomes $=250$

$$
P\left(E_{1}\right)=\frac{\not{ }^{8} 25 \emptyset}{\frac{150 \emptyset}{30_{6}}}=\frac{1}{6}
$$

(b) Let E_{2} be the event of selecting a part - time maid

No. of favourable outcome $=860$

$$
\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{860}{1500}=\frac{43}{75}
$$

(c) House hold having no maid $=1500-(1480)=20$

Let E_{3} be an event of selecting a household having no maid

$$
P\left(E_{3}\right)=\frac{2 \varnothing}{\frac{150}{75}}=\frac{1}{75}
$$

$$
\text { Mean }=\frac{\text { Sum of all observations }}{\text { Number of observation }}
$$

$$
=\frac{1+2+3+4+6+8+12+24}{8}
$$

$$
\frac{60}{8}=7.5
$$

Median
Here $n=8$ (even)

$$
\begin{aligned}
\text { Median } & =\left[\frac{n^{\text {th }}}{2}+\left(\frac{n}{2}+1\right)^{\text {th }}\right] \text { obs. } \div 2 \\
& =\left(4^{\text {th }}+5^{\text {th }}\right) \text { obs. } \div 2 \\
& =\frac{4+6}{2}=\frac{10}{2}=5 .
\end{aligned}
$$

खण्ड-द / SECTION-D

प्रश्न संख्या 21 से 31 में प्रत्येक का 4 अंक है।
Question numbers $\mathbf{2 1}$ to $\mathbf{3 1}$ carry four marks each.

```
5x+50+4x+60+6y+60+3y+100=360
\(9 x+9 y+270^{\circ}=360^{\circ} \Rightarrow x+y=10^{\circ}\)
```


http://jsuniltutorial.weebly.com/

Solution: $O P \perp A D$
http://jsuniltutorial.weebly.com/
$A D$ is the chord of the outer circle
$\therefore \mathrm{AP}=\mathrm{PD}=\frac{1}{2} \mathrm{AD}$ \qquad
(Perpendicular from the centre to the chord bisect the chord)

Similarly $B C$ is the chord of the inner circle and $O P \perp B C$
$\therefore \mathrm{BP}=\mathrm{PC}=\frac{1}{2} \mathrm{BC}$ \qquad

Subtracting (2) from (1)

$$
\begin{aligned}
& A P-B P=P D-P C=\frac{1}{2} A D-\frac{1}{2} B C \\
& A B=C D=\frac{1}{2}(A D-B C)
\end{aligned}
$$

Value : charity/ concern for handicapped children/ friendship

Extend DY to meet AB produced in Z.
In $\triangle \mathrm{DCY}$ and $\triangle \mathrm{BYZ}$
$\angle 1=\angle 2 \quad$ (alternate interior angles)
$\angle 3=\angle 4 \quad$ (vertically opposite angles)
$C Y=Y B(Y$ is mid-point $)$
$\therefore \quad \Delta \mathrm{DCY} \cong \Delta \mathrm{ZBY}$ (by AAS rule)

So, $C D=B Z$ (by cpct)
Also, using mid-point theorem

$$
\begin{aligned}
x Y & =\frac{1}{2} A Z \\
& =\frac{1}{2}(A B+C D)=\frac{1}{2}(50+30)=40 \mathrm{~cm}
\end{aligned}
$$

$\operatorname{ar}(D C Y X)=\frac{1}{2} \times h_{1}(D C+X Y), h$ is height of trapezium DCYX

$$
\begin{aligned}
& =\frac{1}{2} \times h_{1} \times(30+40) \\
& =\frac{1}{2} \times h_{1} \times 70
\end{aligned}
$$

$\operatorname{ar}(X Y B A)=\frac{1}{2} \times h_{2} \times(A B+X Y)$
$=\frac{1}{2} \times h_{2} \times 90, h_{2}$ is height of XYBA
$\therefore \quad \frac{\operatorname{ar}(D C Y X)}{\operatorname{ar}(X Y B A)}=\frac{\frac{1}{2} \times \not K_{1} \times 70}{\frac{1}{2} \times \not K_{2} \times 90}\left[\therefore h_{1}=h_{2}\right.$ by equal intercept theorem $]$
$\therefore \operatorname{ar}(\mathrm{DCYX})=\frac{7}{9} \operatorname{ar}(X Y B A)$

$\angle \mathrm{A}=90^{\circ}$ (Each angle of square $\left.=90^{\circ}\right)$
In $\triangle P A M$ and $\triangle Q B M$
$\angle 3=\angle 4$ (Vertically opposite angle)
$A M=B M(M$ is the mid - point of $A B)$
$\angle 1=\angle 2=90^{\circ}$ (Proved above)
$\Delta \mathrm{PAM} \cong \triangle \mathrm{QBM}$ (By ASA Congruence Rule)
$\therefore \mathrm{PM}=\mathrm{QM}(\mathrm{By} \mathrm{cpct})$
Also, $\angle \mathrm{PMC}=\angle \mathrm{QMC}=90^{\circ}$ (Linear Pair)

In $\triangle \mathrm{PMC}$ and $\triangle \mathrm{QMC}$, (Proved above)
$P M=Q M$
$\angle \mathrm{PMC}=\angle \mathrm{QMC}=90^{\circ}$ (Proved above)
$\mathrm{MC}=\mathrm{MC}($ Common $)$
$\Delta \mathrm{PMC} \cong \triangle \mathrm{QMC}$ (By SAS Congruence Rule)
\therefore By cpct, $\mathrm{CP}=\mathrm{CQ}$

Construction 3 marks

Steps of construction 1 mark

$$
\begin{gathered}
\frac{r_{1}}{r_{2}}=\frac{2}{1} \quad V_{1}=v_{2} \\
\pi r_{1}^{2} h_{1}=\pi r_{2}^{2} h_{2} \\
\pi \cdot 4 \frac{r_{2}^{2}}{2} \cdot h_{1}=\pi \frac{1 / 2}{2 /} h_{2} \\
h_{2}=4 h_{1} \\
h_{1}: h_{2}=1: 4
\end{gathered}
$$

28
$\left(\frac{\text { TSA }}{\text { CSA }}\right)_{\text {cylinder }}=\frac{3}{2}$
$\mathrm{TSA}=14784 \mathrm{~cm}^{2}$
$2 \pi r(r+h)=14784$
$2 \pi \mathrm{rh}=\mathrm{CSA}=\frac{2}{3}(14784)=9856 \mathrm{~cm}^{2}$
$2 \pi r^{2}+2 \pi r h=14784$
$2 \pi r^{2}=4928$
$r^{2}=784$
$\mathrm{r}=28 \mathrm{~cm}$
$\mathrm{h}=\frac{9856 \times 7}{2 \times 22 \times 28} \Rightarrow \mathrm{~h}=56 \mathrm{~cm}$
$V=\pi r^{2} h=\frac{22}{7} \times 28 \times 28 \times 56^{8}$
$=137984 \mathrm{~cm}^{3}$

29
Radius of the tank $=r=1.5 \mathrm{~m}=\frac{15}{10}=\frac{3}{2} \mathrm{~m}$
Volume of hemispherical tank $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2} \\
& =\frac{99}{14} \mathrm{~m}^{3} \\
& =\frac{99000}{14} \text { litres }
\end{aligned}
$$

Volume of water to be emptied $=\frac{1}{2} \times \frac{99000}{14}=\frac{99000}{28} l$
Rate at which water is emptied by a pipe $=3 \frac{4}{7}$ litres $/ \mathrm{s}$

$$
=\frac{25}{7} \text { litres } / \mathrm{s}
$$

Time required to empty half $=\frac{\text { Volume of water to be emptied }}{\text { Rate at which water is emptied by pipe }}$
the tank

$$
\begin{aligned}
& =\frac{99000 / 28}{25 / 7} \\
& =990 \text { Seconds } \\
& =16.5 \mathrm{mins}
\end{aligned}
$$

As probability $($ Head $)=0.4$
and No. of favourable outcome $=24$
$\Rightarrow \mathrm{P}(\mathrm{H})=0.4=\frac{24}{x}$
$\Rightarrow 0.4=\frac{24}{x}$
$\Rightarrow x=\frac{24}{0.4} \times 10=60$
$\therefore 60$ times the coin was tossed

Hence, No. of times tail turned up $=60-24$

$$
=36
$$

\therefore Probability of getting tail $=\frac{36}{60}=\frac{6}{10}=0.6$

So, $\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{T})$
$=0.4+0.6$
$=1$

Hence verified

खण्ड-य / SECTION-E
(मुक्त पाठ /Open Text)
http://jsuniltutorial.weebly.com/

