SUMMATIVE ASSESSMENT-I(2015-16)

MATHEMATICS

Class - IX

DAV, Brihar (patne)

Time: 3 hours

Maximum Marks:90

General Instructions:

- 1. All questions are compulsory.
- The question paper consists of 31 questions divided into four sections A,B,C and D. Section-A
 comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C
 comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
- 3. There is no overall choice in this question paper.
- 4. Use of calculator is not permitted.

SECTION -A

1. Find the value of $\frac{2^{\circ}+7^{\circ}}{5^{\circ}}$

2 Is the given expression $\sqrt{2} x + x^3 + 3x^2$, a polymonial? [1]

3. Write the distance of point S(-3,6) from y-axis. 6

4. If sides of a triangle are 16 cm, 22 cm and 26 cm then find its semi perimeter. [1]

JSUN SECTION TO UTORIAL

5. Evaluate: $\left(\frac{32}{243}\right)^{\frac{-7}{5}}$ 6. Find the value of a if (x-1) is a factor of $2x^2 + ax + \sqrt{2}$.

[2]

In the given figure line segment PQ and RS intersect each other at a point T, such that $\angle PRT = 40^\circ$, $\angle RPT = 95^\circ$ and $\angle TSQ = 75^\circ$ find $\angle SQT$.

8 State any two of Euclid's five postulates.

[2]

9 ABC is an isosceles triangle with AB = AC. Draw AP \perp BC. Show that \angle B= \angle C.

[2]

10. Find the coordinates of the vertices of a rectangle which is placed in III quadrant, in the Cartesian plane with length'p' units on the x-axis and breadth 'q' units on the y-axis.

[2]

SECTION -C

11. Simplify:
$$8^{\frac{2}{3}} - \sqrt{9} \times 10^{\frac{4}{3}} + \left(\frac{1}{144}\right)^{\frac{-1}{2}}$$

12. Simplify:
$$\frac{3}{5-\sqrt{3}} + \frac{2}{5+\sqrt{3}}$$

13. Whether $x^3 - 3x^2 + 4$ is divisible by (x-2) or not?

14. In a garden (105)³ kg of flowers are grown. Then find this value by using suitable identities. [3]

15. Represent $\sqrt{9.3}$ on the number line.

JSUNIL TUTOŁ

16. Prove that the sum of the angles of a triangle is 180°.

- 17. In right triangle ABC, $\angle C = 90^{\circ}$. M is mid-point of hypotenuse AB. C is joined to M and produced to a [3] point D such that DM = CM. Point D is joined to point B. Show that
 - (i) \triangle AMC \cong \triangle BMD
 - (ii) $\angle DBC = \angle ACB$
- 18. In the figure, AB and CD are respectively the smallest and the longest sides of a quadrilateral ABCD. [3] Show that $\angle A > \angle C$.

19. In the figure given below, PQ||RS and T is any point as shown in the figure then show that $\angle PQT + \angle QTS + \angle RST = 360^{\circ}$.

20. The angles of a triangle are $(x-40)^\circ$, $(x-20)^\circ$ and $(\frac{x}{2}-10)^\circ$. Find the value of x and then the angles of the triangle [3] of the triangle.

SECTION -D

21. If $x = 9 - 4\sqrt{5}$, find the value of $x^2 + \frac{1}{x^2}$

22. Simplify: $\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}} + \frac{3}{\sqrt{6}+\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}}$

- 23. Factorise: $(x^2 3x)^2 8(x^2 3x) 20$. 24. Using long division method show that the polynomial $p(x) = x^3 + 1$ is divisible by q(x) = x + 1. Verify β

your result using factor theorem. 25. If a + b = 12 and ab = 27, find the value of $a^3 + b^3$.

26. Express in the form of $\frac{p}{a}$:

- $0.\overline{38} + 1.2\overline{7}$
- 27. Two sides AB and AC of a \triangle ABC (as shown in figure) are produced to P and Q respectively. The bisectors of $\angle PBC$ and $\angle QCB$ intersect each other at O. Prove that $\angle BOC=90^{\circ} - \frac{1}{2} \angle A$. [4]

JSUNIL TUTORIAL

[4]

[4]

- 28. Show that in a right triangle the hypotenuse is the longest side.
- 29. Plot the points A(-3, -3), B(3, -3), C(3,3), D(-3,3) in the cartesian plane. Also find the length of line segment AB.
- 30. In the given figure, PQRS is a square and SRT is an equilateral triangle. Prove that:
 - (i) $\angle PST = \angle QRT$
 - (ii) PT = QT
 - (iii) $\angle QTR = 15^{\circ}$

31. The polynomial $ax^3 + 3x^2 - 3$ and $2x^3 - 5x + a$, When divided by x-4 leave the same remainder in each case. Then find the value of a. [4]
