144

CENTRAL PUBLIC SCHOOL

Subject - Maths

TAJPUR ROAD, SAMASTIPUR

Time- 3 hrs.

Class - IX

MID TERM EXAM - 2018

F. M. - 80

Section - A

Solve these sums.

- 1. If $625^x = \frac{25}{5^x}$, Find x...
- 2. In which quadrant (s), the abscissa of a point is negative?
- 3. Find the value of $f(x) = 2x^2 + 7x + 3$ at x = -2.
- 4. To which country does Euclid belong?
- 5. Find the measure of an angle whose supplement is equal to the angles itself.
- 6. Find the area of an isosceles triangle having base x cm and equal side y cm.

Section – B (2marks each)

- 7. Factorise: $7\sqrt{2} x^2 10x 4\sqrt{2}$
- 8. Find the angle which exceeds its complement by 20°.
- 9. It is known that x + y = 10 and that x = z. Show that z + y = 10. Solve the equation using appropriate Euclid's axiom.
- 10. The diagonals of a rectangle ABCD meet at O. If $\angle BCD = 44$, find $\angle OAD$.
- 11. The altitude of an equilateral triangle is $3\sqrt{3}$ cm. Find its area.
- 12.If the mean of the observations x, 2x+1, 2x+5, 2x+9 is 30, what is the mean of last two observations.

Section - C (3 marks each)

13.If x = $5-2\sqrt{6}$ then find the value of $x^2 + \frac{1}{y^2}$

14. Verify that: $x^3+y^3+3^3-3xyz=\frac{1}{2}(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]$

15. If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 - 3abc = -25$

If a, b, c are all non-zero and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$

16. Find the coordinates of the point.

- a. Which lies on both the axes?
- b. Whose abscissa is -4 and lies on x-axis?
- c. Whose ordinate is 5 and lies on y-axis?
- 17. In \triangle ABC, the side AB and AC of \triangle ABC are produce to points E and D respectively. If bisectors BO and CO of ∠CBE and ∠BCD respectively meet at point O, then prove that $\angle BOC = 90^{\circ} - \frac{1}{2} \angle A$

Class-9 2+y = 10 (Save they which wrice and to one 2 2+y = 10 (Save they are cause to one

- 18. The mid-points of the sides of a quadrilateral are joined in order, prove that the area of the I | gm so formed will be half of the area of the given quadrilateral.
- 19.ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that ABCD is square.
- 20. Factorise: 2x3 3x2 17x + 30 or if $x^2 + \frac{1}{x^2} = 34$, find $x^3 + \frac{1}{x^3} 9$
- 21. The unequal side of an isosceles triangle measures 24cm and its area is 60cm². Find the perimeter of the given isosceles triangle.
- $\sqrt{2}$ 2. The mean of the following distribution is 50.

v	10	30	50	70	90	
F	17	5a + 3	32	7a – 11	19	

Find the value of a and hence the frequencies of 30 and 70.

Section - D (4 marks each)

- 23. Represent $\sqrt{4.5}$ on the number line. With steps.
- 24. Find the values of a and b so that (3+1) and (3-1) are factors of $z^4 + az^3 + 2z^2 3z + b$.

Prove that $(a + b + c)^3 - a^3 - b^3 - c^3 = 3(a + b) (b + c) (c + a)$

- 25. ABC is an isosceles triangle in which AB=AC. Side BA is produced to D such that AD=AB. Show that <u>LBCD</u> is a right angle.
- 267ABCD is a trapezium in which AB||CD and AD=BC. Show that.

a. LA = LB

 $\angle C$. $\angle C = \angle D$ d. \triangle ABC $\cong \triangle$ BAD

b. diagonal AC = diagonal BD.

AD is the median of △ABC. E is mid-point of AD. BE produced to meet AC at F. show that AF = $\frac{1}{3}$ AC.

- 27. State and prove SSS congruence rule.
- 28. Draw a frequency polygon to represent the following information:

Class	25-29	30-34	35-39	40-44	45-49	50-54
frequency	5	15	23	20	10	7

29. In figure ABCD is a parallelogram and BC is produced to a point Q such that AD=CQ. If AQ

30. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side. Or

In a ABCD in which diagonal AC and BD intersect at 0, show that AB + BC + CD + DA $\angle 2(AC + BD)$

Class - 9

Maths