IX Mathematics Chapter-polynomials (Algebra)
 CBSE TEST PAPER-06
 Section-A

1. $\sqrt{ } 2$ is a polynomial of degree
(A) 2
(B) 0
(C) 1
(D) $1 / 2$
2. Degree of the polynomial $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7$ is
(A) 4
(B) 5
(C) 3
(D) 7
3. Degree of the zero polynomial is
(A) 0
(B) 1
(C) Any natural number
(D) Not defined
4. Zero of the zero polynomial is
(A) 0
(B) 1
(C) Any real number
(D) Not defined
5. If $x^{51}+51$ is divided by $x+1$, the remainder is
(A) 0
(B) 1
(C) 49
(D) 50

Section-B

1. Using factor theorem show $x-2$ is a factor of $x^{6}-64$
2. Factories using factor theorem $2 x^{3}+7 x^{2}-9$ (ii) $4 z^{3}+23 z 2-41 x-42$ (iii) $6 x^{3}-x^{2}-12 x-5$
(iv) $6 x^{2}-13 x+6(v) p^{3}(q-r)^{3}+q^{3}(r-p)^{3}+r^{3}(p-q)^{3}$
3. Find value using suitable identity $\begin{array}{lll}\text { (a) } 999^{3} & \text { (b) } 99.8^{3} & \text { (c) } 70^{3}-50^{3}-20^{3}\end{array}$
4. Factorize : $x^{3}+y^{3}+z^{3}-3 x y z=\left[(x+y+z)\left\{(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right\}\right]$
5. Find the remainder when $x^{3}-5 x+8$ is divided by $x-2$

Section-C
6. Show that $x-1$ is a factor of $x^{5}-1$ while $x^{5}+1$ is not divisible by $x-1$.
7. Using remainder theorem, find the value of a if the division of $x^{3}+5 x^{2}-a x+6$ by ($x-1$) leaves the remainder 2
8. Find value of $x^{3}-8 y^{3}-36 x y-216$ when $x=2 y+6$
9. Verify $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
10.Evaluate: $(x-a)^{3}+(x-b)^{3}+(x-c)^{3}-3(x-a)(x-b)(x-c)$ if given $3 x=a+b+c$

Section - D

11. Find the value of a, if $(x-a)$ is a factor of $x^{3}-a x^{2}+2 x+a-1$.
12. Check whether $p(x)=p(x)=2 x^{3}-11 x^{2}-4 x+5$ is a multiple of $g(x)=g(x)=2 x+1$ or not
13. . Factorize by factor theorem : $x^{3}+y^{3}+z^{3}-3 x y z=\left[(x+y+z)\left\{(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right\}\right]$
14. Find the value of m so that $2 x-1$ be a factor of $8 x^{4}+4 x^{3}-16 x^{2}+10 x+m$.
15. If $a+b+c=9$ and $a b+b c+c a=26$, find $a^{2}+b^{2}+c^{2}$.
