CBSE TEST PAPER $9^{\text {th }}$ Quadrilateral JSUNIL TUTORIAL

1. $P Q R S$ is a square. T and U are respectively, the midpoints of $P S$ and $Q R$. Find the area of $\triangle O T S$, if $P Q=8$ cm , where O is the point of intersection of TU and QS.

2. $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$ (Fig. 2). If $A Q$ intersects $D C$ at P, show that $\operatorname{ar}(B P C)=\operatorname{ar}(D P Q)$

3. In Fig.3, PSDA is a parallelogram. Points Q and R are taken on $P S$ such that $P Q=Q R=R S$ and $P A||Q B|| R C$. Prove that ar (PQE) = ar (CFD).

4. X and Y are points on the side LN of the triangle LMN such that $\mathrm{LX}=\mathrm{XY}=\mathrm{YN}$.
Through X, a line is drawn parallel to LM to meet MN at Z (See Fig. 4). Prove that $\operatorname{ar}(\mathrm{LZY})=\operatorname{ar}(\mathrm{MZYX})$

5.. The area of the parallelogram ABCD is
$90 \mathrm{~cm}_{2}$ (see Fig.5). Find
(i) ar (ABEF) (ii) ar (ABD) (iii) ar (BEF)

5. In $\Delta \mathrm{ABC}, \mathrm{D}$ is the mid-point of
$A B$ and P is any point on $B C$. If $C Q \| P D$ meets $A B$ in Q (Fig. 6), then prove that ar $(\mathrm{BPQ})=1 / 2 \operatorname{ar}(\mathrm{ABC})$.

6. $A B C D$ is a square. E and F are respectively the midpoints of $B C$ and $C D$. If R is the mid-point of $E F$ (Fig. 7), prove that ar (AER) = ar (AFR)

7. O is any point on the diagonal $P R$ of a parallelogram PQRS (Fig. 8). Prove that $\operatorname{ar}(\mathrm{PSO})=\operatorname{ar}(\mathrm{PQO})$.

