

Sample Paper – 2012

Mathematics

Class – IX

FM: 80

SECTION - A

- 1. One angle is equal to four times of its supplement. The measures of the angle are:
- (a) 36°
- (b) 108° (c) 144° (d) 90°
- **2**. Rationalization factor of $\frac{1}{\sqrt{7}-\sqrt{4}}$ is :
- (a) $\sqrt{7} + \sqrt{4}$ (b) $\sqrt{7} \sqrt{4}$
- (c) $\sqrt{4} \sqrt{7}$
- (d) 3
- 3. If equals are subtracted from equals, then the remainders are :

 - (a) equal (b) unequal (c) less
- (d) greater
- 4. The number in which all the digits after the decimal point are repeated is called: (a) rational number (b) terminating decimal
 - c) recurring decimal
- (d) negative rational
- **5**. In $\triangle ABC$, AB = 4cm, BC = 5cm and CA = 6 cm, then:
- (a) $\angle B > \angle A > \angle C$
- (b) $\angle A > \angle B > \angle C$ (c) $\angle B > \angle C > \angle A$ (d) $\angle C > \angle A > \angle B$
- If two supplementary angles are in the ratio 3:7, then angles are:
- (a) 36°,108° (b) 54°, 126° (c) 27°,153° (d) 60°, 120°
- If two right-angled triangle ABC and DEF are right-angled at \angle B and \angle E respectively are congruent by RHS, then:
- (a) AC=DF, AB=DE (b) AC=DF, BC=DE (c) AC=EF, AB=DE (d) AB=DF, BC=EF
- **8**. In the given figure, if $\frac{y}{z}$ = 5 and $\frac{z}{z}$ = 6, then value of x is:
- (a) 12° (b) 18°
- (c) 15°
- (d) 20°

- **9**. If $x^2 + \frac{1}{x^2} = 7$, then $x = \frac{1}{x}$:

- (c) 4
- (d) 5

- **10**. $3^3 + 8^3 11^3 =$

- (a) 792 (b) 892 (c) -792 (d) -892

SECTION-B

- **11.** Find the remainder when $x^3 + ax^2 6x + a$ is divided by x + a
- **12.** Represent $\sqrt{2}$ on the line
- **13**. Simplify $(25)^{-1/3}$ X $\sqrt[3]{16}$.
- **14**. In given figure, if x+y=w+z, then prove that AOB is a line.
- **15**. In the given figure, \angle AOC and \angle BOC form a linear pair and $a-b=70^{\circ}$, find the value of a and b.

- **16**. AD is an altitude of Λ ABC in which AB=AC. Show that AD bisects $\angle A$.
- 17. In the given figure, if lines AB and CD intersect At O such that \angle ACO=45°, \angle OAC=90° and ∠ ODB=75°, find \angle OBD.

18. In the given figure, if Q is mid-point of PR and R is mid-point of QS, then show that $QR = \frac{1}{3}PS$.

SECTION-C

- 19. If $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{18} \sqrt{12}} = a b\sqrt{6}$, find the values of a and b.
- **20**. Visualize the representation of 4. $\overline{36}$ on the number line.
- **21**. If 2^{a-7} X 5^{a-4} = 1250 , find the value a.
- **22**. Find the value of $64x^3 125y^3$, if 4x 5y = 16 and xy = 12.
- **23.** Simplify $(2x-y+3z)(4x^2+y^2+9z^2+2xy+3yz-6zx)$.
- **24**. In fig., it is given that AB = FE, BC = ED, AB \perp BD and FE \perp EC. Prove that $\triangle ABD \cong \triangle FEC$.

25. Find the value of $\angle AOC$ in the given figure.

- ${f 26}.$ The sides of a triangle are in the ration of 13 : 14 : 15 and its perimeter is 84 cm. Find the area of the triangle.
- **27**. Locate the point P(2, 4), Q(4, 2), R(4, -3), S(-3, 4) on the graph paper and join them to recognize the figure.
- 28. In the given figure, OP||RS. Determine \angle PQR.

SECTION-D

29.In the given figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, Then prove that \angle QTR= $\frac{1}{2}$ \angle QPR.

- **30** Using factor theorem, factories $x^3 10x^2 53x^2 42$.
- **31.** If $x^2 + y^2 + z^2 xy yz zx = 0$, prove that x=y=z.
- **32**.Use factor theorem. Prove that (x-y)(y-z) and (z-x) are factors of $x^2(y-z)+y^2(z-x)$ and $z^2(x-y)$.

34. In a \triangle ABC, D is a point on BC, such that AD is the bisector of $\angle A$.prove that AB>BD.