THORIRL ACBSE Coaching for O(athematics and Science

9th Linear Equation in two Variables [Practice Paper-03]

1. Draw the graphs of the equations $x-y=1$ and $2 x+y=8$. Shade the area bounded by these two lines y - axis. Also determine this area.
Solution:

The area of the shaded region $=1 / 2 \times 9$ unit $\times 3$ unit $=13.5$ sq. unit
2. A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Aarushi paid Rs 27 for a book kept for seven days. If fixed charges are Rs x and per day charge are Rs y. Write the linear equation representing the above information.
Solution: Given fixed charges $=$ Rs x and Charge per day $=R s$ y
Given Aarushi paid Rs. 27 for a book kept for seven days
That is fixed charge for 3 days + variable charge for 4 days
Hence $x+4 y=27$
3. A number is 27 more than number obtained by reversing its digits. If its unit's and ten's digit are x and y respectively, write the linear equation representing the above statement.

Solution: Given its unit's and ten's digit are x and y respectively \Rightarrow Original Number $=(10 y+x)$
Number obtained by reversing the digits $=(10 x+y)$
The number is 27 more than the number obtained by reversing the digits
$\Rightarrow(10 y+x)=(10 x+y)+27$.
$\Rightarrow 9 x-9 y+27=0 \Rightarrow x-y+3=0$
The linear equation representing the given statement is $x-y+3=0$.
4. A three - wheeler scooter charges Rs 15 for first kilometer and Rs 8 each for every subsequent kilometer. For a distance of $x \mathrm{~km}$, an amount of $R s y$ is paid. Write the linear equation representing the above information.

Solution: Given, charges Rs 15 for first kilometer and Rs 8 each for every subsequent kilometer that is ($x-1$)

JSUNIL THORI ACBSE Coaching for 9(athematics and Science

$15+(x-1) \times 8=y \quad \Rightarrow Y=8 x+7$
5. The sum of a two digit number and the number obtained by reversing the order of its digits is 121 . If units and ten's digit of the number are x and y respectively, then write the linear equation representing the above statement.

Solution: Given its unit's and ten's digit are x and y respectively \Rightarrow Original Number $=(10 y+x)$
Number obtained by reversing the digits $=(10 x+y)$
The sum of a two digit number and the number obtained by reversing the order of its digits is 121
$\Rightarrow(10 y+x)+(10 x+y)=121 . \quad \Rightarrow 11 x+11 y=121 \quad \Rightarrow x+y-11=0$
The linear equation representing the given statement is $x-y+3=0$.
6. Plot the points $(3,5)$ and $(-1,3)$ on a graph paper and verify that the straight line passing through these points also passes through the point $(1,4)$.

Solution: Yes,

7. If the point $(2,-2)$ lies on the graph of the linear equation $5 x+k y=4$, find the value of K.

Solution: $x=2$ and $y=-2$
$5 \times 2+k x-2=4 \Rightarrow 10-4=2 k \Rightarrow k=3$
8. Solve the equation $2 x+1=x-3$, and represent the solution (s) on (i) the number line (ii) the Cartesian plane.
$2 x+1=x-3 \Rightarrow 2 x-x=-3-1 \Rightarrow x=-4$
(i) $x=-4$ can be represented on the number line as below:

(ii) $x=-4$ can be represent on the cartesian plane as below:

x	-4	-4	-4	-4
y	1	2	3	1

JSMIN THITB: ACBSE Coaching for O(athematies and Science

9. Draw the graph of the equation $2 x+y=6$. Shaded the region bounded by the graph and the coordinate axes. Also, find the area of the shaded region.
Solution: (i) let $x=0$ then $y=6$ (ii) let $x=1$ then $y=3$
Now, we got two points $(0,6),(1,3)$. Plot them on graph.
Distance from origin on x axis $=3$ and distance from origin on y axis $=6$
We got a triangle whose sides are 6 and 3
Thus, area of triangle $=\frac{1}{2} \times 6 \times 3=3 \times 3=9$ sq. unit
10. Ravish tells his daughter Aarushi, "Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be". If present ages of Aarushi and ravish are x and y years respectively, represent this situation algebraically as well as graphically

Solution: Given, present ages of Aarushi and Ravish are x and y years respectively.
Seven years ago, Age of Aarushi $=(x-7)$ years and Age of Ravish $=(y-7)$ years
Age of Ravish $=7 \times$ Age of Aarushi
$\Rightarrow y-7=7(x-7) \Rightarrow y-7=7 x-49 \Rightarrow 7 x-y=42$
Three years hence,
Age of Aarushi $=(x+3)$ years and Age of Ravish $=(y+3)$ years
Age of Ravish $3 \times$ Age of Aarushi
$\Rightarrow y+3=3(x+3) \Rightarrow y+3=3 x+9 \Rightarrow 3 x-y=-6$
The given situation can be represented algebraically by the system of simultaneous equation given by $7 x-$ $y=42$ and $3 x-y=6$. Consider the equation $7 x-y=42$.

11. Aarushi was driving a car with uniform speed of $60 \mathrm{~km} / \mathrm{h}$. Draw distance - time graph. From the graph, find the distance travelled by Aarushi in (a) 2 and $1 / 2$ Hours (b) $1 / 2$ hours

Solution: Speed $=$ distance $/$ time $=60 \Rightarrow D=60 t$

