## 3. Geometric Constructions

Construction of various geometrical figures is a very important part of the study of geometry for understanding the concepts learnt in theoretical geometry.

## BASIC CONSTRUCTIONS

(i) To draw a perpendicular bisector of a given line segment.

(ii) To draw an angle bisector of a given angle.

(iii) To draw a perpendicular to a line at a given point on it.


## Downloaded from: http://jsuniltutorial.weebly.com/

(iv) To draw a perpendicular to a given line from a point outside it.

(v) To draw an angle congruent to a given angle.

(vi) To draw a line parallel to a given line through a point outside it.


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)

1. Draw perpendicular bisector of seg $A B$ of length 8.3 cm . (2 marks)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)

2. Draw an angle of $125^{\circ}$ and bisect it.
(2 marks)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)
3. Construct $\triangle L M N$, such that $L M=6.2 \mathrm{~cm}, \mathrm{MN}=4.9 \mathrm{~cm}, \mathrm{LN}=5.6 \mathrm{~cm}$.


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)

4. Construct $\triangle P Q R$ such that $P Q=5.7 \mathrm{~cm}, \angle P=\angle Q=50^{\circ}$. (2 marks)

(Rough Figure)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)

5. Construct $\triangle \mathrm{DEF}$ such that, $\mathrm{DE}=6.5 \mathrm{~cm}, \angle \mathrm{E}=50^{\circ}, \angle \mathrm{F}=30^{\circ}$; and draw EM $\perp \mathrm{DF}$, measure the length EM.
Analysis :
In $\triangle \mathrm{DEF}$,
$\mathrm{m} \angle \mathrm{D}+\mathrm{m} \angle \mathrm{E}+\mathrm{m} \angle \mathrm{F}=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{D}+50+30=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{D}+80=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{D}=180^{\circ}-80^{\circ}$


## TYPE: 1

[A] Constructing tangents to a circle from a point on the circle.
Example : Draw a tangent to a circle of radius 2 cm at a point on it.


## Steps of construction :

1. Draw a circle with radius 2 cm . Let ' $M$ ' be the centre of the circle.
2. Take any point ' $P$ ' on the circle
3. Draw ray MP.
4. Draw the line ' $l$ ' perpendicular to the ray MP at point ' $P$ '. Line ' $l$ ' is the required tangent to the circle.

## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

1. Draw a tangent at any point ' $M$ ' on the circle of radius 2.9 cm and centre ' $O$ '.


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

2. Draw a tangent at any point $R$ on the circle of radius 3.4 cm and centre ' $P$ '. (2 marks)


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

3. Draw a circle of radius 2.6 cm . Draw tangent to the circle from any point on the circle using centre of the circle.
(2 marks)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

12. Draw a tangent to a circle of a radius 3.1 cm and centre $O$ at any point ' $R$ ' on the circle.
(2 marks)


## TYPE : 1

## [B] Constructing tangents to a circle from a point on the circle without using centre.

Example : Given a circle, with a point $P$ on it. Draw a tangent to the circle without using its centre.


## Steps of construction :

1. Draw the required circle.
2. Take any point ' $P$ ' on it.
3. Draw chord PQ.
4. Take any point ' $R$ ' on the alternate arc of arc PXQ other points than $P$ and $Q$.
5. Join QR and RP.
6. Draw a ray PN making an angle congruent to $\angle \mathrm{QRP}$, taking QP as one side and point $P$ as vertex.
7. The line containing ray PN is the required tangent.

## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

6. Draw a circle of radius 2.7 cm and draw chord $P Q$ of length 4.5 cm . Draw tangents at $P$ and $Q$ without using centre.


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

7. Draw a circle having radius 3 cm draw a chord $X Y=5 \mathrm{~cm}$. Draw tangents at point $X$ and $Y$ without using centre.
(3 marks)
(Rough Figure)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

13. Draw a circle of radius 3.6 cm , take a point $M$ on it. Draw a tangent to the circle at $M$ without using centre of the circle.
(2 marks)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
14. Draw a circle of suitable radius and draw a chord $X Y$ of length 4.6 cm . Draw tangents at points $X$ and $Y$ without using centre.


SCHOOL SECTION

## TYPE : 2

[A] Constructing tangents to a circle from a point outside the circle.
Example: Draw a tangent to the circle of radius 1.7 cm from a point at a distance of 5.2 cm from the centre.

## Steps of construction :

1. Draw a circle with radius 1.7 cm . Let O be the centre of the circle.
2. Take a point $P$ such that $O P=5.2 \mathrm{~cm}$.
3. Draw perpendicular bisector of seg OP
 and mark the midpoint of seg OP as ' M '.
4. With ' M ' as a centre and radius MP draw a semicircle
5. Let ' $A$ ' be the point of intersection of semicircle and the circle.
6. Draw a line joining $P$ and $A$. Line PA is the required tangent.

## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

8. Draw a tangent to the circle from the point $B$, having radius 3.6 cm and centre ' $C$ '. Point $B$ is at a distance 7.2 cm from the centre. ( 3 marks)
(Rough Figure)


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

9. Draw a tangent to the circle from the point $L$ with radius 2.8 cm . Point ' $L$ ' is at a distance 5 cm from the centre ' $M$ '.

(Rough Figure)


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

10. Draw a tangent to the circle with centre $O$ and radius 3.3 cm from a point $A$ such that $d(O, A)=7.5 \mathrm{~cm}$. Measure the length of tangent segment.


The length of tangent segnment $A B$ is 6.7 cm .

## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

15. Construct tangents to the circle from point $B$ with radius 3.5 cm and centre A. Point $B$ is at a distance 7.3 cm from the centre. ( 3 marks) (Rough Figure)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
16. Draw tangents to the circle with centre $P$ and radius 2.9 cm . From a point $Q$ which is at a distance 8.8 cm from the centre.
(3 marks)


## TYPE : 3

## Constructing circumcircle of triangles

1. A circle passing through the vertices of the triangle is called the circumcircle of a triangle.
2. Circumcentre can be obtained by drawing perpendicular bisectors of any two sides of a triangle.
3. The point of intersection of the perpendicular bisectors is called circumcentre and it is equidistant from the vertices of the triangle.

The position of circumcentre depends upon the type of a triangle.
(i) If the triangle is an obtuse angled triangle, the circumcentre lies outside the triangle.
(ii) If the triangle is an acute angled triangle, the circumcentre lies inside the triangle.
(iii) If the triangle is a right angled triangle, the circumcentre lies on the midpoint of the hypotenuse.

Example : Draw $\triangle \mathrm{ABC}$, with $\mathrm{AB}=4.1 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. Construct circumcircle of $\triangle \mathrm{ABC}$. Measure the radius of the circle.


## Steps of construction :

1. Construct $\triangle \mathrm{ABC}$, with $\mathrm{AB}=4.1 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.
2. Draw perpendicular bisectors of any two sides of $\triangle A B C$ and let them intersect at point O.
3. Draw a circle with centre O and radius OA .
4. This circle is the circumcircle of $\triangle \mathrm{ABC}$.

## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

1. Draw the circumcircle of $\triangle P M T$ such that, $P M=5.4 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}, \angle \mathrm{M}=70^{\circ}$. (3 marks)
(Rough Figure)


EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)
3. Construct the circumcircle of $\triangle K L M$ in which $K M=7 \mathrm{~cm}, \angle K=60^{\circ}$, $\angle M=55^{\circ}$. (3 marks)

(Rough Figure)


## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

4. Construct a right angled triangle $\triangle P Q R$ where $P Q=6 \mathrm{~cm}, \angle Q P R=40^{\circ}$, $\angle P R Q=90^{\circ}$. Draw circumcircle of $\triangle P Q R$.


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)
6. Construct $\triangle L E M$ such that, $L E=6 \mathrm{~cm}, \mathrm{LM}=\mathbf{7 . 5} \mathrm{cm}, \angle \mathrm{LEM}=90^{\circ}$ and draw its circumcircle.
(3 marks)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

26. In $\triangle P Q R, \angle Q=90^{\circ}$, seg $Q M$ is the median. $P Q^{2}+Q^{2}=169$. Draw a
circumcircle of $\triangle P Q R$.
Analysis: $\mathrm{PQ}^{2}+\mathrm{QR}^{2}=169$
But,
$\mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{PR}^{2}$
$\therefore \quad \mathrm{PR}^{2}=169$
$\therefore \quad \mathrm{PR}=13$
$\mathrm{PM}=\mathrm{MR}=\frac{1}{2} \mathrm{PR}$
$=\frac{1}{2} \times 13$
$\therefore \quad \mathrm{PM}=\mathrm{MR}=6.5 \mathrm{~cm}$
In $\triangle P Q R$,
$\mathrm{m} \angle \mathrm{PQR}=90^{\circ}$

$$
\begin{aligned}
\mathrm{QM} & =\frac{1}{2} \mathrm{PR} \\
& =\frac{1}{2} \times 13
\end{aligned}
$$

$$
\therefore \quad \mathrm{QM}=6.5 \mathrm{~cm}
$$

(i) [Given]
(ii) [By Pythagoras theorem]
[By definition of median]
[Median drawn to the hypotenuse is half of hypotenuse]
(Rough Figure)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

25. Construct a circumcircle of $\triangle A B C$ such that $A B=5 \mathrm{~cm}, A C=12 \mathrm{~cm}$, $\angle B A C=90^{\circ}$.
(3 marks)


## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

2. Construct the circumcircle of $\Delta$ SIM in which $\operatorname{SI}=6.5 \mathrm{~cm}, \angle \mathrm{I}=125^{\circ}$, $\mathrm{IM}=4.4 \mathrm{~cm}$.
(3 marks)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 196)

7. Construct $\triangle \mathrm{DCE}$, such that, $\mathrm{DC}=7.9 \mathrm{~cm}, \angle \mathrm{C}=135^{\circ}, \angle \mathrm{D}=20^{\circ}$ and draw circumcircle.
(3 marks)


Note : This figure is drawn proportionally and not with given measurements.

## TYPE : 4

## Constructing incircle of triangles

1. A circle which touches all the sides of a triangle is called the incircle of the triangle. The centre of the incircle is called incentre.
2. Incentre is obtained by drawing angle bisectors of the triangle.
3. The angle bisectors are concurrent and their point of intersection is equidistant from the sides of the triangle.

Example : Construct $\triangle S R P$ such that $R P=6 \mathrm{~cm}, \angle R=75^{\circ}$ and $\angle P=55^{\circ}$.

## Steps of construction :

1. Draw $\triangle \mathrm{SRP}$ with $\mathrm{RP}=6 \mathrm{~cm}, \angle \mathrm{R}=75^{\circ}$ and $\angle \mathrm{P}=55^{\circ}$
2. Draw angle bisectors of $\angle \mathrm{R}$ and $\angle \mathrm{P}$.
3. Let ' I ' be the point of intersection of these angle bisectors
4. Draw seg IM $\perp$ side RP.
5. Draw a circle with centre I and radius IM.

The circle so obtained is the incircle of $\Delta \mathrm{SRP}$.
EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)
5. Construct the incircle of $\triangle R S T$ in which $R S=6 \mathrm{~cm}, S T=7 \mathrm{~cm}$ and


$$
\mathrm{RT}=6.5 \mathrm{~cm}
$$



## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

7. Construct the incircle of $\triangle D E F$ in which $D E=D F=5.8 \mathrm{~cm}, \angle E D F=65^{\circ}$. (3 marks)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
8. Construct incircle of $\triangle \mathrm{SGN}$ such that $\mathrm{SG}=\mathbf{6 . 7} \mathrm{cm}, \angle \mathrm{S}=\mathbf{7 0}{ }^{\circ}, \angle \mathrm{G}=\mathbf{5 0 ^ { \circ }}$ and draw incircle of $\triangle S G N$.
(3 marks)


## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

8. Construct any right angled triangle and draw incircle of that triangle.
(3 marks)
$\triangle \mathrm{ABC}$ is the required right angled triangle.
Such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{ABC}=90^{\circ}$
(Rough Figure)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
9. Construct the incircle of $\triangle S R N$, such that $R N=5.9 \mathrm{~cm}, R S=4.9 \mathrm{~cm}$, $\angle R=95^{\circ}$.
(3 marks)
(Rough Figure)


## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

6. Construct the incircle of $\triangle S T U$ in which, $S T=7 \mathrm{~cm}, \angle T=120^{\circ}, T U=5 \mathrm{~cm}$.
(3 marks)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
10. Construct $\triangle D A T$ such that $D A=6.4 \mathrm{~cm}, \angle D=120, \angle A=25$ and draw incircle of $\triangle \mathrm{DAT}$.
(3 marks)


## EXERCISE - 3.1 (TEXT BOOK PAGE NO. 84)

9. Construct the circumcircle and incircle of an equilateral $\triangle X Y Z$ with side 6.3 cm .
(3 marks)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
11. Draw the circumcircle and incircle of an equilateral triangle ABC with side 6.6 cm .
(Rough Figure)


## TYPE : 5

To construct an arc having the given segment as its chord and subtending a given angle at any point on the arc.

Example : Draw an arc such that seg $A B$ of length 5.4 cm subtends an $\angle A Q B$ of $50^{\circ}$ on it.


## Step of construction :

1. Draw seg AB of length 5.4 cm .
2. Draw rays AO and BO making an angle of $40^{\circ}$ with seg AB on the same side.
3. Draw an arc with $O$ as the centre and radius OA.
4. Take any point $Q$ on the arc. Draw $\angle A Q B$.
5. Arc AQB is the required arc.

## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

11. Draw an arc with $\operatorname{seg} \mathrm{AB}=6.3 \mathrm{~cm}$, inscribing $\angle \mathrm{ACB}=65^{\circ}$. (3 marks)


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

13. Draw an arc such that chord $S T=5.6 \mathrm{~cm}$, inscribing $\angle S V T=80^{\circ}$.
(3 marks)
(Rough Figure)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
17. Construct an arc $P Q M$ such that seg $P M$ of length 6.2 cm subtends an angle of $40^{\circ}$ on it .


## EXERCISE - 3.2 (TEXT BOOK PAGE NO. 93)

12. Draw an arc with seg $M N=8.9 \mathrm{~cm}$, inscribing $\angle M P N=125^{\circ}$. ( 2 marks)


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
18. Construct an arc DCV such that seg DV of length 9.5 cm subtends an angle of $135^{\circ}$ on it.
(2 marks)
(Rough Figure)


## TYPE : 6

Constructing triangles with a given base, angle opposite to the base and median.

## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 101)

1. Construct $\triangle L M N$ such that $L M=6.6 \mathrm{~cm}, \angle L N M=65^{\circ}$ and $N D$ is median ND $=5 \mathrm{~cm}$.
(4 marks)
(Rough Figure)


EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)
2. Construct $\triangle$ GHI such that $G I=5.4 \mathrm{~cm}, \angle G H I=75^{\circ}$. HR is median. HR $=3.2 \mathrm{~cm}$.


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

19. Construct $\triangle S A B$ such that $S B=7.6 \mathrm{~cm}, \angle \mathrm{SAB}=50^{\circ} \operatorname{seg} \mathrm{AD}$ is median and $A D=5 \mathrm{~cm}$.


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

21. Construct $\triangle \mathrm{DEF}$ such that $\mathrm{DF}=8.1 \mathrm{~cm}, \angle \mathrm{DEF}=140^{\circ}$ and median $\mathrm{EM}=2.5 \mathrm{~cm}$. (4 marks)


## EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)

3. Construct $\triangle A B C$ such that $B C=7.8 \mathrm{~cm}, \angle B A C=100^{\circ}$ and median $A M=3.5 \mathrm{~cm}$.
(Rough Figure)
(4 marks)


EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)
4. Construct $\triangle X Y Z$ such that $X Y=9.5 \mathrm{~cm}, \angle X Z Y=115^{\circ}, Z P$ is median. $Z P=3.3 \mathrm{~cm}$.
(4 marks)


## TYPE: 7

Constructing triangles with a given base, angle opposite to the base and an altitude.

EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)
5. Construct $\triangle \mathrm{DEF}$ such that $\mathrm{DF}=6.2 \mathrm{~cm}, \angle \mathrm{DEF}=60^{\circ}, \mathrm{EM} \perp \mathrm{DF}$ and $E M=4.4 \mathrm{~cm}$.
(Rough Figure)
(4 marks)


EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)
6. Construct $\triangle R S T$ such that $R T=5.7 \mathrm{~cm}, \angle R S T=55^{\circ}, S D \perp R T, S D=3.4 \mathbf{c m}$.


## EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)

9. Construct $\triangle K L M$ such that $K M=7.2 \mathrm{~cm}, \angle K L M=72^{\circ}, L A \perp K M$, $K A=4.8 \mathrm{~cm}$.
(4 marks)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

22. Construct $\triangle L A C$ such that $L C=6.7 \mathrm{~cm}, \angle L A C=72^{\circ}$ and altitude $A B$ has length 4 cm .
(Rough Figure)



## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

20. Construct $\triangle K P M$ such that $K M=\mathbf{7 c m}, \angle K P M=90^{\circ}$ and length of altitude PS is 2.9 cm . (Rough Figure)
(4 marks)


EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)
8. Construct $\triangle C V X$ such that $C X=9.1 \mathrm{~cm}, \angle C V X=130^{\circ}, V D \perp C X$ and
(Rough Figure)


## EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)

10. Construct $\triangle S P Q$ such that $S Q=8.3 \mathrm{~cm}, \angle S P Q=127^{\circ}, P M \perp S Q$, $P M=1.6 \mathrm{~cm}$.

(4 marks)


EXERCISE - 3.3 (TEXT BOOK PAGE NO. 101)
7. Construct $\triangle P Q R$ such that $P Q=9.2, \angle P R Q=112^{\circ}, R K$ is an attitude, RK $=2.4 \mathrm{~cm}$.


## TYPE : 8

## Constructing similar triangles

## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 105)

1. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{In} \triangle \mathrm{ABC}, \mathrm{AB}=5.2 \mathrm{~cm}, \mathrm{BC}=4.6 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\frac{\mathrm{BC}}{\mathrm{EF}}: \frac{2}{3}$;
construct $\triangle \mathrm{DEF}$.
Analysis : $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{2}{3} \\
& \angle \mathrm{~B}=\angle \mathrm{E}=45^{\circ} \\
& \therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{2}{3} \quad[\text { From (i) }] \\
& \therefore \quad \frac{5.2}{\mathrm{DE}}=\frac{2}{3} \\
& \therefore \quad \frac{15.6}{2}=\mathrm{DE} \\
& \therefore \quad \mathrm{DE}=7.8 \mathrm{~cm}
\end{aligned}
$$

(4 marks)
[Given]

$$
\begin{align*}
& \text { [c.s.s.t.] }  \tag{i}\\
& \text { [c.a.s.t.] } \\
\therefore \quad & \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{2}{3} \quad[\text { From (i)] } \\
\therefore \quad & \frac{4.6}{\mathrm{EF}}=\frac{2}{3} \\
\therefore \quad & \frac{13.8}{2}=\mathrm{EF} \\
\therefore \quad & \mathrm{EF}=6.9 \mathrm{~cm}
\end{align*}
$$

Information for constructing $\triangle \mathrm{DEFis}$ complete.

(Required triangle)


## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 105)

2. $\quad \triangle L M N \sim \Delta X Y Z$, In $\triangle L M N, L M=6 \mathrm{~cm}, M N=6.8 \mathrm{~cm}, L N=7.6 \mathrm{~cm}$ and
$\frac{\mathrm{LM}}{\mathrm{XY}}=\frac{4}{3}$; construct $\Delta \mathrm{XYZ}$.
Analysis : $\Delta \mathrm{LMN} \sim \Delta \mathrm{XYZ}$
$\therefore \frac{\mathrm{LM}}{\mathrm{XY}}=\frac{\mathrm{MN}}{\mathrm{YZ}}=\frac{\mathrm{LN}}{\mathrm{XZ}}=\frac{4}{3}$
...... (i)
i) [c.s.s.t.]

| $\therefore \frac{\mathrm{LM}}{\mathrm{XY}}=\frac{4}{3}$ | [From (i)] | $\therefore \frac{\mathrm{MN}}{\mathrm{YZ}}=\frac{4}{3} \quad$ [From (i)] | $\therefore \frac{\mathrm{LN}}{\mathrm{XZ}}=\frac{4}{3}$ [From (i)] |
| :--- | :--- | :--- | :--- |
| $\therefore \frac{6}{\mathrm{XY}}=\frac{4}{3}$ | $\therefore \frac{6.8}{\mathrm{YZ}}=\frac{4}{3}$ | $\therefore \frac{7.6}{\mathrm{XZ}}=\frac{4}{3}$ |  |
| $\therefore \frac{18}{4}=\mathrm{XY}$ | $\therefore \frac{20.4}{4}=\mathrm{YZ}$ | $\therefore \frac{22.8}{4}=\mathrm{XZ}$ |  |
| $\therefore \mathrm{XY}=4.5 \mathrm{~cm}$ | $\therefore \mathrm{YZ}=5.1 \mathrm{~cm}$ | $\therefore \mathrm{XZ}=5.7 \mathrm{~cm}$ |  |

Information for constructing $\triangle \mathrm{XYZ}$ is complete.
(Given triangle)


## (Required triangle)



## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 105)

3. $\triangle$ RHP $\sim \triangle N E D, \operatorname{In} \triangle N E D, N E=7 \mathrm{~cm}, \angle D=30^{\circ}, \angle N=20^{\circ}$ and $\frac{H P}{E D}=\frac{4}{5}$;
construct $\triangle$ RHP.
Analysis : $\triangle$ RHP ~ $\triangle$ NED

$$
\begin{align*}
& \therefore \quad \frac{\mathrm{RH}}{\mathrm{NE}}=\frac{\mathrm{HP}}{\mathrm{ED}}=\frac{\mathrm{RP}}{\mathrm{ND}}=\frac{4}{5} \quad \ldots \ldots . . \text { (i) }  \tag{i}\\
& \angle \mathrm{R}=\angle \mathrm{N}=20^{\circ} \\
& \angle \mathrm{P}=\angle \mathrm{D}=30^{\circ} \\
& \angle \mathrm{H}=\angle \mathrm{E}=130^{\circ} \\
& \therefore \quad \quad \text { [c.s.s.t.] } \\
& \therefore \quad \quad \text { [c.a.s.t.] } \\
& \therefore \mathrm{RH}=\frac{4}{5} \\
& \therefore \quad \quad \text { [From (i) } \\
& \therefore H=\frac{28}{5}=5.6 \mathrm{~cm}
\end{align*}
$$

[Given]

Information for constructing $\triangle R H P$ is complete.


## (Required triangle)



## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 105)

4. $\Delta L T R \sim \Delta H Y D, \operatorname{In} \Delta H Y D, H Y=7.2 \mathrm{~cm}, Y D=6 \mathrm{~cm}, \angle Y=40^{\circ}$ and $\frac{L R}{H D}=\frac{5}{6}$, construct $\triangle$ LTR.
(4 marks)
Sol.

$$
\Delta \mathrm{RHP} \sim \Delta \mathrm{NED}
$$

$\therefore \frac{\mathrm{LT}}{\mathrm{HY}}=\frac{\mathrm{TR}}{\mathrm{YD}}=\frac{\mathrm{LR}}{\mathrm{HD}}=\frac{5}{6}$
(i) [c.s.s.t.]
$\angle \mathrm{T}=\angle \mathrm{Y}=40^{\circ}$
$\therefore \frac{\mathrm{LT}}{\mathrm{HY}}=\frac{5}{6} \quad$ [From (i)]
[c.a.s.t.]
$\therefore \frac{\mathrm{LT}}{7.2}=\frac{5}{6}$
$\therefore \frac{\mathrm{TR}}{\mathrm{YD}}=\frac{5}{6} \quad[$ From (i)]
$\therefore \quad \frac{\mathrm{TR}}{6}=\frac{5}{6}$
$\therefore$ LT $=\frac{36}{6}$
$\therefore \quad \mathrm{TR}=\frac{30}{6}$
$\therefore$ LT $=6$
[Given]

Information for constructing $\triangle \mathrm{HYD}$ is complete.


## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 105)

5. $\triangle A M T \sim \triangle A H E$, In $\triangle A M T, M A=6.3 \mathrm{~cm}, \angle M A T=120^{\circ}, A T=4.9 \mathrm{~cm}$ and $\frac{\text { MA }}{H A}=\frac{7}{5}$, construct $\triangle A H E$. (4 marks)


## EXERCISE - 3.4 (TEXT BOOK PAGE NO. 105)

6. $\Delta$ SHR $\sim \Delta S V U$, In $\Delta S H R, S H=4.5 \mathrm{~cm}, H R=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\frac{\mathrm{SH}}{\mathrm{SV}}=\frac{3}{5}$; construct $\Delta \mathrm{SVU}$.
(4 marks)
(Rough Figure) U


PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)
23. $\triangle \mathrm{ABC} \sim \triangle \mathrm{LMN} . \operatorname{In} \triangle \mathrm{ABC}, \mathrm{AB}=5.1 \mathrm{~cm}, \angle \mathrm{~B}=55^{\circ}, \angle \mathrm{C}=65^{\circ}$ and $\frac{\mathrm{AC}}{\mathrm{LN}}=\frac{3}{5}$. then construct $\triangle \mathrm{LMN}$.
Sol. $\quad \triangle \mathrm{ABC} \sim \Delta \mathrm{LMN}$

$$
\begin{equation*}
\therefore \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{\mathrm{BC}}{\mathrm{MN}}=\frac{\mathrm{AC}}{\mathrm{LN}}=\frac{3}{5} \tag{i}
\end{equation*}
$$

$$
\therefore \frac{\mathrm{AB}}{\mathrm{LM}}=\frac{3}{5}
$$

[From (i)]
$\therefore \frac{5.1}{\mathrm{LM}}=\frac{3}{5}$
$\therefore \frac{25.5}{3}=\mathrm{LM}$
$\therefore$ LM $=8.5$
Information for constructing $\triangle \mathrm{LMN}$ is complete.

## (Given triangle)


(Required triangle)


## PROBLEM SET - 3 (TEXT BOOK PAGE NO. 197)

24. $\triangle X Y Z \sim \Delta D E F$, in $\triangle D E F, D E=5.5 \mathrm{~cm}, \angle E=40^{\circ}, E F=4 \mathrm{~cm}$ and $\frac{X Y}{D E}=\frac{6}{5}$
then construct $\triangle X Y Z$.
(4 marks)
Ans.

$$
\Delta \mathrm{XYZ} \sim \Delta \mathrm{DEF}
$$

[Given]
$\therefore \frac{\mathrm{XY}}{\mathrm{DE}}=\frac{\mathrm{YZ}}{\mathrm{EF}}=\frac{\mathrm{XZ}}{\mathrm{DF}}=\frac{6}{5}$
(i) [c.s.s.t.]
$\therefore \frac{\mathrm{XY}}{\mathrm{DE}}=\frac{6}{5} \quad[$ From (i)]
$\therefore \frac{X Y}{5.5}=\frac{6}{5}$

$$
\therefore \quad \frac{Y Z}{4}=\frac{6}{5}
$$

$\therefore x y=\frac{33}{5}$

$$
\therefore \quad Y Z=\frac{24}{5}
$$

$\therefore \mathrm{XY}=6.6$
[c.s.s.t.]

$$
\therefore Y Z=4.8
$$

Information for constructing $\triangle \mathrm{XYZ}$ is complete.
(Given triangle)

$$
\therefore \quad \frac{\mathrm{YZ}}{\mathrm{EF}}=\frac{6}{5} \quad[\text { From (i) }]
$$


(Required triangle)


## HOTS PROBLEM

(Problems for developing Higher Order Thinking Skill)
14. To draw seg $A B$ of length $\sqrt{65}$ without using Pythagoras theorem.
(4 marks)
Analysis : In $\triangle \mathrm{ABC}$,
$\angle A B C=90^{\circ}$
seg $\mathrm{BD} \perp$ hypotenuse AC
$\therefore \quad \triangle \mathrm{ABC} \sim \Delta \mathrm{ADB} \quad$ [Theorem on similarity of right angled triangle]
$\therefore \frac{A B}{A D}=\frac{A C}{A B} \quad$ [c.s.s.t.]
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
$\therefore \quad \mathrm{AB}^{2}=5 \times 13$
$\therefore \quad \mathrm{AB}^{2}=65$
$\therefore \quad \mathrm{AB}=\sqrt{65}$


## Downloaded from: http://jsuniltutorial.weebly.com/

## OR

Analysis : In $\triangle \mathrm{CAD}$,
$\mathrm{m} \angle \mathrm{CAD}=90^{\circ}$
seg $\mathrm{AB} \perp$ hypotenuse CD
$\therefore \quad \mathrm{AB}^{2}=\mathrm{CB} \times \mathrm{BD}$
[Property of Geometric mean]
$\therefore \quad \mathrm{AB}^{2}=5 \times 13$
$\therefore \quad \mathrm{AB}^{2}=65$
$\therefore \quad \mathrm{AB}=\sqrt{65}$
[Taking square roots]


全
Note : This figure is drawn proportionally and not with given measurements.
16. Draw segment $A B$ of any length. Take point $D$ on $A B$ such that $A D^{2}=3 B D^{2}$.

Analysis : In $\Delta \mathrm{CDB}$,

$$
\begin{array}{rlr}
\tan \angle \mathrm{CBD} & =\frac{\mathrm{CD}}{\mathrm{BD}} & {[\text { By definition] }} \\
\therefore \text { tan } 60 & =\frac{\mathrm{AD}}{\mathrm{BD}} & {[\because \mathrm{CD}=\mathrm{AD}]} \\
\therefore \sqrt{3} & =\frac{\mathrm{AD}}{\mathrm{BD}} & \\
\therefore 3 & =\frac{\mathrm{AD}^{2}}{\mathrm{BD}^{2}} & \text { [Squaring both sides] }
\end{array}
$$

$\therefore \mathrm{AD}^{2} \quad=3 \mathrm{BD}^{2}$

22. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle A=100^{\circ}$, then construct a triangle whose sides are $\frac{4}{7}$ times the corresponding sides of $\triangle A B C$.
(4 marks)
Analysis : In $\triangle \mathrm{ABC}$,

| $\mathrm{m} \angle \mathrm{A}$ | $=100^{\circ}$ | [Given] |  |
| ---: | :--- | ---: | :--- |
| $\mathrm{m} \angle \mathrm{B}$ | $=45^{\circ}$ |  |  |
| $\therefore$ | $\mathrm{m} \angle \mathrm{C}$ | $=35^{\circ}$ | [Remaining angle] |

(Rough Figure) A


whose sides are $\frac{4}{7}$ times the corresponding sides of $\triangle A B C$
23. Construct a triangle $A B C$, in which $B C=3.5 \mathrm{~cm}, \angle B=60^{\circ}$ and altitude $A D=2.5 \mathrm{~cm}$ and draw its incircle and measure its radius. (4 marks)


Note : This figure is drawn proportionally and not with given measurements.
24. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm .

Draw its circumcircle and measure its radius.
(4 marks)
Analysis : $\triangle \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$
seg $A D \perp$ side $B C$
$\mathrm{BD}=\mathrm{DC}=\frac{1}{2} \mathrm{BC} \quad$ [Perpendicular drawn to the base, bisects the base]
$\mathrm{BD}=\mathrm{DC}=\frac{1}{2} \times 8$
$B D=D C=4$
(Rough Figure)

25. In $\triangle P Q R, Q R=7.5 \mathrm{~cm}, \angle Q P R=110^{\circ}$ and $P Q+P R=8.3 \mathrm{~cm}$ then construct $\triangle P Q R$ and measure $\angle P Q R$. Construct its circumcircle.
Analysis : line 1 is perpendicular bisector of side TR
$\therefore \quad \mathrm{PT}=\mathrm{PR} \quad \ldots \ldots$. (i)
$\mathrm{QT}=8.3 \mathrm{~cm}$
$\therefore \quad \mathrm{PQ}+\mathrm{PT}=8.3$
$\therefore \quad \mathrm{PQ}+\mathrm{PR}=8.3$
In $\triangle \mathrm{PTR}$,
side $\mathrm{PT} \cong$ side PR
$\therefore \quad \angle \mathrm{PTR} \cong \angle \mathrm{PRT}$
Let, $\angle \mathrm{PTR}=\angle \mathrm{PRT}=\mathrm{x}$
Now, $\angle \mathrm{QPR}$ is an exterior angle of $\triangle \mathrm{PTR}$,
$\therefore \quad \angle \mathrm{QPR}=\angle \mathrm{PTR}+\angle \mathrm{PRT} \quad$ [Remote interior angles theorem]
$\therefore \quad 110=\mathrm{x}+\mathrm{x}$
$\therefore \quad 110=2 x$
$\therefore \quad \mathrm{x}=55$
$\therefore \quad \angle \mathrm{PTR}=\angle \mathrm{PRT}=55^{\circ}$
$\therefore$ Information to draw $\triangle \mathrm{RQT}$ is complete.
(Rough Figure)


26. Construct $\triangle L M N$, such that $L N=8 \mathrm{~cm}$ and $\angle L M N=80^{\circ}$ and $L M-M N=3 \mathrm{~cm}$.

Construct its circumcircle.
(5 marks)
Analysis : Line $l$ is a perpendicular bisector of side TN
$\therefore \quad \mathrm{TM}=\mathrm{MN}$
[Perpendicular bisector theorem]
$\mathrm{LM}=\mathrm{LT}+\mathrm{TM}$
$\therefore \quad \mathrm{LM}=3+\mathrm{MN}$
[L-T - M]
[From (i)]
(Rough Figure)
$\therefore \quad \mathrm{LM}-\mathrm{MN}=3 \mathrm{~cm}$
In $\triangle \mathrm{MTN}$,
side $\mathrm{MT} \cong$ side $\mathrm{MN} \quad[$ From (i)]
$\begin{aligned} \therefore \quad & \angle \mathrm{MTN} \cong \angle \mathrm{MNT} \\ & \text { Let, } \angle \mathrm{MTN}=\angle \mathrm{MNT}=\mathrm{x}\end{aligned}$
$\therefore \quad \mathrm{x}+\mathrm{x}+\angle \mathrm{M}=180$

$\therefore \quad \mathrm{x}+\mathrm{x}+80=180$
$\therefore \quad 2 x=180-80$
$\therefore \quad 2 \mathrm{x}=100$
$\therefore \quad \mathrm{x}=50$
$\therefore \quad \angle \mathrm{MTN}=\angle \mathrm{MNT}=50^{\circ}$
$\angle \mathrm{LTN}+\angle \mathrm{MTN}=180$
$\therefore \quad \angle \mathrm{LTN}+50=180$
$\therefore \quad \angle \mathrm{LTN}=180-50$
$\therefore \quad \angle \mathrm{LTN}=130^{\circ}$
Information for drawing $\triangle$ LTN is complete.


27. Construct $\triangle X Y Z$ such that, $Y Z=6.2 \mathrm{~cm}, \angle Z=65^{\circ}$ and $X Y-X Z=2.4 \mathrm{~cm}$ and draw incircle of it.
(4 marks)
Analysis : Line $l$ is a perpendicular bisector of side YW
$\therefore \quad \mathrm{XY}=\mathrm{XW}$
[Perpendicular bisector theorem]
$X W=X Z+Z W$
[ $\mathrm{X}-\mathrm{Z}-\mathrm{W}$ ]
$\therefore \quad X Y=X Z+2.4$
[From (i)]
$\therefore \quad X Y-X Z=2.4$

28. In $\triangle R S T, R S=5 \mathbf{c m}, R T=6.8 \mathbf{c m}$ and median $R M=5.3 \mathbf{c m}$ construct a circumcircle of $\triangle$ RST.
(4 marks)
Analysis : In $\Delta R S T$ extend median $R X$ to point $P$ such that $R-X-P$ and $R X=X P$ also $\mathrm{SX}=\mathrm{XT}$
$\therefore \quad \square$ PSRT is a parallelogram
(Rough Figure)
Information to constructing parallelogram PSRT is complete and $\triangle$ RST can be obtained.

29. In $\triangle A B C, B C=6 \mathrm{~cm}$ and median $A M=5.1 \mathrm{~cm}$. $G$ is the centroid of $\triangle A B C$ and $\triangle B G C=130^{\circ}$. Construct $\triangle A B C$.
(4 marks)
Analysis : In $\triangle A B C, G$ is the centroid on median $A M$
$\therefore \quad \mathrm{GM}=\frac{1}{3} \mathrm{AM} \quad$ [Centroid bisects each median] $\therefore \quad \mathrm{GM}=\frac{1}{3} \times 5.1=1.7 \mathrm{~cm}$ Also, $\angle \mathrm{BGC}=130^{\circ}$ and $\mathrm{BC}=6 \mathrm{~cm}$ Information for constructing $\triangle \mathrm{BGC}$ is complete. Position of A can be obtained an line GM. Hence draw $\triangle A B C$.

(Rough Figure)

30. Draw a triangle $A B C$, right angled at $B$ such that, $A B=3 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$. Now construct a triangle similar to $\triangle A B C$, each of whose sides is $\frac{7}{5}$ times the corresponding side of $\triangle A B C$.
(4 marks)


MCQ's

1. What is the point of concurrence of the medians of a triangle called ?
(a) Circumcentre
(b) Incentre
(c) Orthocentre
(d) Centroid
2. What is the point of concurrence of the altitudes of a triangle called ?
(a) circumcentre
(b) incentre
(c) orthocentre
(d) centroid
3. What is the point of concurrence of the angle bisectors of a triangle called ?
(a) circumcentre
(b) incentre
(c) orthocentre
(d) centroid
4. An arc of a circle containing an angle of $70^{\circ}$ is to be drawn on the upper side of seg $A B$. What are the measures of the angles to be drawn at points $A$ and $B$ ?
(a) $20^{\circ}$ on the upper side of seg AB
(b) $70^{\circ}$ on the upper side of seg AB
(c) $20^{\circ}$ on the lower side of seg AB
(d) $70^{\circ}$ on the lower side of seg AB
5. An arc of a circle containing an angle of $140^{\circ}$ is to be drawn on the upper side of seg $A B$. What are the measures of the angles to be drawn at points $A$ and $B$.
(a) $70^{\circ}$ on the upper side of seg AB
(b) $50^{\circ}$ on the upper side of seg AB
(c) $50^{\circ}$ on the lower side of seg AB
(d) $70^{\circ}$ on the lower side of seg AB
6. To find the circumcentre of $\triangle \mathrm{ABC}$, we bisect $\qquad$ of $\triangle \mathrm{ABC}$.
(a) side $A B$
(b) all sides
(c) any two sides
(d) any two angles
7. To find incentre of a given triangle, we bisect
(a) any two angles
(b) all sides
(c) all angles
(d) one side and one angle
8. From a point outside a circle, $\qquad$ tangents can be drawn
(a) one
(b) two
(c) at the most two
(d) none of these
9. The circumcentre of an acute angled triangle is $\qquad$ of the triangle.
(a) on one side
(b) in the interior
(c) in the exterior
(d) none of these
10. If the circumcentre lies in the exterior of the triangle, then it is $\qquad$ triangle.
(a) a right angled
(b) an acute angled
(c) an isosceles
(d) an obtuse angled
11. Tangent drawn from a point M on the circle is perpendicular to the $\qquad$ ..
(a) chord MP
(b) diameter MN
(c) chord AB
(d) radius OP
12. To draw arc of measure $120^{\circ}$ on seg AB , we first construct isosceles triangle with base angle of $\qquad$ .
(a) $30^{\circ}$
(b) $60^{\circ}$
(c) $90^{\circ}$
(d) $120^{\circ}$
13. Three sides of $\triangle A B C$ are given. To construct similar $\triangle P Q R$, at least of $\triangle \mathrm{PQR}$ must be given.
(a) one angle
(b) any two angles
(c) any one side
(d) all sides
14. The circumcentre and incentre of $\qquad$ triangle are at the same point.
(a) a scalene
(b) an isosceles
(c) an equilateral
(d) an acute angled
15. To construct $\triangle \mathrm{ABC}$ of base $\mathrm{AB}=5 \mathrm{~cm}$ and height $\mathrm{CP}=6 \mathrm{~cm}$, we draw parallel line at a distance of $\qquad$ cm.
(a) 1
(b) 5
(c) 6
(d) 11
16. The sides of $\triangle A B C$ are $6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}$. A circumcentre of $\triangle A B C$ is drawn. What is the radius of the circumcircle ?
(a) 5 cm
(b) 10 cm
(c) 4 cm
(d) 24 cm
17. $\triangle \mathrm{ABC} \sim \Delta \mathrm{XYZ} \therefore$ $\qquad$ $\cong$ $\qquad$
(a) $A B, X Y$
(b) $\mathrm{BC}, \mathrm{YZ}$
(c) $A C, A Z$
(d) $\angle \mathrm{B}, \angle \mathrm{Y}$
18. To draw a tangent at point be on arc ABC $\qquad$ must be given.
(a) centre
(b) none
(c) diameter
(d) length of chord AC
19. $\triangle \mathrm{ABC} \sim \Delta \mathrm{XYZ}$ and $\frac{\mathrm{AB}}{\mathrm{XY}}=\frac{2}{1}$
$\therefore \frac{\mathrm{m} \angle \mathrm{ABC}}{\mathrm{m} \angle \mathrm{XYZ}}=$ $\qquad$ .
(a) $\frac{1}{2}$
(b) 2
(c) 1
(d) $\frac{1}{3}$
20. $O$ is the centre of a circle with radius 5 cm , the length of the tangent segment drawn from the point 13 cm from centre O is $\qquad$ cm .
(a) 5
(b) 13
(c) 12
(d) 18

## : ANSWERS :

1. (d) Centroid
2. (b) incentre
3. (b) $50^{\circ}$ on the upper side of seg AB
4. (a) any two angles
5. (b) in the interior
6. (b) diameter MN
7. (c) any one side
8. (c) 6
9. 

(d) $\angle B, \angle Y$
19. (c) 1
2. (c) orthocentre
4. (a) $20^{\circ}$ on the upper side of seg AB
6. (c) any two sides
8. (b) two
10. (d) an obtuse angled
12. (a) $30^{\circ}$
14. (c) an equilateral
16. (a) 5 cm
18. (a) none
20. (c) 12

# MGHESH TUTORIfLS 

Marks : 30

## CHAPTER 3 : Geometric Construction

## GEOMETRY

SET - A
Duration : 1 hr .15 min .

## Q.I. Solve the following :

(i) Draw an angle of $125^{\circ}$ and bisect it.
(ii) Draw a circle of radius 3.6 cm , take a point M on it. Draw a tangent to the circle at M without using centre of the circle.

## Q.II. Attempt the following :

(i) Draw a tangent to the circle with centre O and radius 3.3 cm from a point A such that $d(O, A)=7.5 \mathrm{~cm}$. Measure the length of tangent segments.
(ii) Construct the incircle of $\triangle \mathrm{DEF}$ in which $\mathrm{DE}=\mathrm{DF}=5.8 \mathrm{~cm}, \angle \mathrm{EDF}=65^{\circ}$.
(iii) $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, In $\triangle \mathrm{ABC}, \mathrm{AB}=5.2 \mathrm{~cm}, \mathrm{BC}=4.6 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\frac{\mathrm{BC}}{\mathrm{EF}}: \frac{2}{3}$; construct $\triangle \mathrm{DEF}$.
Q.III. Solve the following :
(i) Construct $\triangle \mathrm{DEF}$ such that $\mathrm{DF}=8.1 \mathrm{~cm}, \angle \mathrm{DEF}=140^{\circ}$ and median $\mathrm{EM}=2.5 \mathrm{~cm}$.
(ii) Construct $\triangle \mathrm{PQR}$ such that $\mathrm{PQ}=9.2, \angle \mathrm{PRQ}=112^{\circ}, \mathrm{RK}$ is an attitude, $R K=2.4 \mathrm{~cm}$.
(iii) In $\triangle \mathrm{PQR}, \angle \mathrm{Q}=90^{\circ}$, seg QM is the median. $\mathrm{PQ}^{2}+\mathrm{QR}^{2}=169$. Draw a circumcircle of $\triangle \mathrm{PQR}$.
Q.IV. Solve the following :
(i) $\triangle \mathrm{AMT} \sim \triangle \mathrm{AHE}$, In $\triangle \mathrm{AMT}, \mathrm{MA}=6.3 \mathrm{~cm}, \angle \mathrm{MAT}=120^{\circ}$, $\mathrm{AT}=4.9 \mathrm{~cm}$ and $\frac{\mathrm{MA}}{\mathrm{HA}}=\frac{7}{5}$, construct $\triangle \mathrm{AHE}$.

## Best of Luck

# MGHESH TUTORIfLS 

Marks : 30
SCHOOL SECTION

## CHAPTER 3 : Geometric Construction

Q.I. Solve the following :
(i) Draw a tangent at any point R on the circle of radius 3.4 cm and centre ' P '.
(ii) Draw an arc with $\operatorname{seg} \mathrm{AB}=6.3 \mathrm{~cm}$, inscribing $\angle \mathrm{ACB}=65^{\circ}$.
Q.II. Attempt the following :
(i) Construct the incircle of $\triangle \mathrm{SRN}$, such that $\mathrm{RN}=5.9 \mathrm{~cm}, \mathrm{RS}=4.9 \mathrm{~cm}$, $\angle \mathrm{R}=95^{\circ}$.
(ii) Construct $\triangle \mathrm{LEM}$ such that, $\mathrm{LE}=6 \mathrm{~cm}, \mathrm{LM}=7.5 \mathrm{~cm}, \angle \mathrm{LEM}=90^{\circ}$ and draw its circumcircle.
(iii) Draw tangents to the circle with centre P and radius 2.9 cm . From a point Q which is at a distance 8.8 cm from the centre.
Q.III. Solve the following :
(i) Construct $\triangle \mathrm{LMN}$ such that $\mathrm{LM}=6.6 \mathrm{~cm}, \angle \mathrm{LNM}=65^{\circ}$ and ND is median ND $=5 \mathrm{~cm}$.
(ii) Construct $\triangle \mathrm{LAC}$ such that $\mathrm{LC}=6.7 \mathrm{~cm}, \angle \mathrm{LAC}=72^{\circ}$ and altitude AB has length 4 cm .
(iii) $\quad \triangle \mathrm{LMN} \sim \triangle \mathrm{XYZ}, \mathrm{In} \triangle \mathrm{LMN}, \mathrm{LM}=6 \mathrm{~cm}, \mathrm{MN}=6.8 \mathrm{~cm}, \mathrm{LN}=7.6 \mathrm{~cm}$ and $\frac{\mathrm{LM}}{\mathrm{XY}}=\frac{4}{3}$; construct $\triangle \mathrm{XYZ}$.

## Q.IV. Solve the following :

(i) $\Delta \mathrm{SHR} \sim \Delta \mathrm{SVU}$, $\mathrm{In} \Delta \mathrm{SHR}, \mathrm{SH}=4.5 \mathrm{~cm}, \mathrm{HR}=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\frac{\mathrm{SH}}{\mathrm{SV}}=\frac{3}{5}$; construct $\Delta \mathrm{SVU}$.

Best of Luck

