9th Areas of parallelograms and triangles NCERT Solved Questions

Areas of parallelograms

EXERCISE 9.1

Q.1. Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Sol. (i) Base DC, parallels DC and AB
(iii) Base QR , parallels QR and PS
(v) Base AD , parallels AD and BQ .

EXERCISE 9.2

Q.1. In the figure, $A B C D$ is a paralle-logram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}$, $A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$.
Sol. Area of parallelogram ABCD

$$
\begin{aligned}
& =\mathrm{AB} \times \mathrm{AE} \\
& =16 \times 8 \mathrm{~cm}^{2}=128 \mathrm{~cm}^{2}
\end{aligned}
$$

Also, area of parallelogram ABCD

$$
=\mathrm{AD} \times \mathrm{FC}=(\mathrm{AD} \times 10) \mathrm{cm}^{2}
$$

$\therefore \quad \mathrm{AD} \times 10=128$

$$
\Rightarrow \quad \mathrm{AD}=\frac{128}{10}=\mathbf{1 2 . 8} \mathbf{~ c m ~ A n s . ~}
$$

Q.2. If E, F, G, and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that ar $(E F G H)=\frac{1}{2}$ ar ($A B C D$).
Sol. Given : A parallelogram $\mathrm{ABCD} \cdot \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are mid-points of sides AB, BC, CD, DA respectively

To Porve : $\operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$

Construction : Join AC and HF.
Proof : In $\triangle \mathrm{ABC}$,
E is the mid-point of $A B$.
F is the mid-point of BC .
$\Rightarrow \mathrm{EF}$ is parallel to AC and $\mathrm{EF}=\frac{1}{2} \mathrm{AC}$
Similarly, in $\triangle \mathrm{ADC}$, we can show that

$\mathrm{HG} \| \mathrm{AC}$ and $\mathrm{HG}=\frac{1}{2} \mathrm{AC}$
From (i) and (ii)
EF \| HG and EF = HG
\therefore EFGH is a parallelogram. [One pour of opposite sides is equal and parallel]
In quadrilateral ABFH , we have
$\mathrm{HA}=\mathrm{FB}$ and $\mathrm{HA} \| \mathrm{FB} \quad\left[\mathrm{AD}=\mathrm{BC} \Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC} \Rightarrow \mathrm{HA}=\mathrm{FB}\right]$
$\therefore \mathrm{ABFH}$ is a parallelogram.
[One pair of opposite sides is equal and parallel]
Now, triangle HEF and parallelogram HABF are on the same base HF and between the same parallels HF and AB .
\therefore Area of $\triangle \mathrm{HEF}=\frac{1}{2}$ area of HABF
Similarly, area of $\triangle \mathrm{HGF}=\frac{1}{2}$ area of HFCD
Adding (iii) and (iv),
Area of $\triangle \mathrm{HEF}+$ area of $\triangle \mathrm{HGF}$

$$
=\frac{1}{2}(\text { area of } \mathrm{HABF}+\text { area of } \mathrm{HFCD})
$$

$\Rightarrow \operatorname{ar}(\mathrm{EFGH})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$ Proved.
Q.3. P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$. Show that ar $(A P B)=\operatorname{ar}(B Q C)$.
Sol. Given : A parallelogram $\mathrm{ABCD} . \mathrm{P}$ and Q are any points on DC and AD respectively.
To prove : $\operatorname{ar}(\mathrm{APB})=\operatorname{ar}(\mathrm{BQC})$
Construction : Draw PS || AD and $\mathrm{QR} \| \mathrm{AB}$.
Proof : In parallelogram ABRQ, BQ is the diagonal.

\therefore area of $\triangle \mathrm{BQR}=\frac{1}{2}$ area of ABRQ

In parallelogram $\mathrm{CDQR}, \mathrm{CQ}$ is a diagonal.
\therefore area of $\triangle \mathrm{RQC}=\frac{1}{2}$ area of CDQR
Adding (i) and (ii), we have
area of $\triangle B Q R+$ area of $\triangle R Q C$

$$
\begin{equation*}
\left.=\frac{1}{2} \quad \text { [area of } \mathrm{ABRQ}+\text { area of } \mathrm{CDQR}\right] \tag{iii}
\end{equation*}
$$

\Rightarrow area of $\triangle \mathrm{BQC}=\frac{1}{2}$ area of ABCD
Again, in parallelogram DPSA, AP is a diagonal.
\therefore area of $\triangle \mathrm{ASP}=\frac{1}{2}$ area of DPSA
In parallelogram BCPS, PB is a diagonal.
\therefore area of $\triangle \mathrm{BPS}=\frac{1}{2}$ area of BCPS
Adding (iv) and (v)
area of $\triangle \mathrm{ASP}+$ area of $\triangle \mathrm{BPS}=\frac{1}{2}$ (area of DPSA + area of BCPS $)$
\Rightarrow area of $\triangle \mathrm{APB}=\frac{1}{2}$ (area of ABCD)
From (iii) and (vi), we have area of $\triangle \mathrm{APB}=$ area of $\triangle \mathrm{BQC}$. Proved.
Q.4. In the figure, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(A P B)+\operatorname{ar}(P C D)=\frac{1}{2} \operatorname{ar}(A B C D)$
(ii) $a r(A P D)+a r(P B C)=a r(A P B)+a r(P C D)$

Sol. Given : A parallelogram $A B C D . P$ is a point inside it.
To prove : (i) ar (APB) $+\operatorname{ar}(\mathrm{PCD})$

$$
=\frac{1}{2} \text { ar (ABCD) }
$$

(ii) ar (APD) + ar (PBC)

$$
=\text { ar (APB) }+ \text { ar (PCD) }
$$

Construction : Draw EF through P parallel to AB, and GH through P parallel to AD.
Proof: In parallelogram FPGA, AP is a diagonal,
\therefore area of $\triangle \mathrm{APG}=$ area of $\triangle \mathrm{APF}$
In parallelogram BGPE, PB is a diagonal,
\therefore area of $\triangle \mathrm{BPG}=$ area of $\triangle \mathrm{EPB}$
In parallelogram DHPF, DP is a diagonal,

JSUNIL TUTORIAL

 Chase Excellence

 Chase Excellence}
\therefore area of $\triangle \mathrm{DPH}=$ area of $\triangle \mathrm{DPF}$
.. (iii)
In parallelogram HCEP, CP is a diagonal,
\therefore area of $\triangle \mathrm{CPH}=$ area of $\triangle \mathrm{CPE}$
Adding (i), (ii), (iii) and (iv)
area of $\triangle \mathrm{APG}+$ area of $\triangle \mathrm{BPG}+$ area of $\triangle \mathrm{DPH}+$ area of $\triangle \mathrm{CPH}$
$=$ area of $\triangle \mathrm{APF}+$ area of $\triangle \mathrm{EPB}+$ area of $\triangle \mathrm{DPF}+$ area $\triangle \mathrm{CPE}$
\Rightarrow [area of $\triangle \mathrm{APG}+$ area of $\Delta \mathrm{BPG}]+$ [area of $\triangle \mathrm{DPH}+$ area of $\Delta \mathrm{CPH}]$
$=[$ area of $\triangle \mathrm{APF}+$ area of $\Delta \mathrm{DPF}]+[$ area of $\triangle \mathrm{EPB}+$ area of $\triangle \mathrm{CPE}]$
\Rightarrow area of $\triangle \mathrm{APB}+$ area of $\Delta \mathrm{CPD}=$ area of $\triangle \mathrm{APD}+$ area of $\triangle \mathrm{BPC}$

But area of parallelogram ABCD
$=$ area of $\triangle \mathrm{APB}+$ area of $\triangle \mathrm{CPD}+$ area of $\triangle \mathrm{APD}+$ area of $\triangle \mathrm{BPC}$... (vi)
From (v) and (vi)
area of $\triangle \mathrm{APB}+$ area of $\triangle \mathrm{PCD}=\frac{1}{2}$ area of ABCD
or, $\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD})$ Proved.
(ii) From (v),
$\Rightarrow \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{CPD})$ Proved.
Q.5. In the figure, $P Q R S$ and $A B R S$ are parallelograms and X is any point on side $B R$. Show that
(i) $\operatorname{ar}(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS})$
(ii) $\operatorname{ar}(A X S)=\frac{1}{2} \operatorname{ar}(P Q R S)$

Sol. Given : PQRS and ABRS are parallelograms and X is any point on side BR.
To prove : (i) ar (PQRS) = ar (ABRS)
(ii) $\operatorname{ar}(\mathrm{AXS})=\frac{1}{2}$ ar (PQRS)

Proof : (i) In $\triangle \mathrm{ASP}$ and BRQ , we have

$$
\begin{equation*}
\angle \mathrm{SPA}=\angle \mathrm{RQB} \quad \text { [Corresponding angles] } \tag{1}
\end{equation*}
$$

[Corresponding angles]
$\angle \mathrm{PAS}=\angle \mathrm{QBR}$
[Angle sum property of a triangle]
$\therefore \angle \mathrm{PSA}=\angle \mathrm{QRB}$ [Angle sum property of a triangle]
Also, $\mathrm{PS}=\mathrm{QR} \quad$ [Opposite sides of the parallelogram PQRS$]$
So, $\quad \Delta \mathrm{ASP} \cong \triangle \mathrm{BRQ} \quad$ [ASA axiom, using (1), (3) and (4)]
Therefore, area of $\triangle \mathrm{PSA}=$ area of $\triangle \mathrm{QRB}$
[Congruent figures have equal areas] ...(5)
Now, ar $(\mathrm{PQRS})=\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ASRQ}]$

$$
=\operatorname{ar}(\mathrm{QRB})+\operatorname{ar}(\mathrm{ASRQ}]
$$

$$
=\operatorname{ar}(\mathrm{ABRS})
$$

So, ar (PQRS) = ar (ABRS) Proved.
(ii) Now, $\triangle \mathrm{AXS}$ and $\| \mathrm{gm}$ ABRS are on the same base AS and between same parallels AS and BR

\therefore area of $\triangle \mathrm{AXS}=\frac{1}{2}$ area of ABRS
\Rightarrow area of $\triangle \mathrm{AXS}=\frac{1}{2}$ area of PQRS $\quad[\because$ ar $(\mathrm{PQRS})=\operatorname{ar}(\mathrm{ABRS}]$
\Rightarrow ar of (AXS) $=\frac{1}{2}$ ar of (PQRS) Proved.
Q.6. A farmer was having a field in the form of a parallelogram PQRS. She took any point A on $R S$ and joined it to points P and Q. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
Sol. The field is divided in three triangles.
Since triangle APQ and parallelogram PQRS are on the same base $P Q$ and between the same parallels PQ and RS.
$\therefore \operatorname{ar}(\mathrm{APQ})=\frac{1}{2} \operatorname{ar}(\mathrm{PQRS})$
$\Rightarrow 2 \mathrm{ar}(\mathrm{APQ})=\operatorname{ar}(\mathrm{PQRS})$
But ar $(\mathrm{PQRS})=\operatorname{ar}(\mathrm{APQ})+\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ARQ})$
$\Rightarrow 2 \operatorname{ar}(\mathrm{APQ})=\operatorname{ar}(\mathrm{APQ})+\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ARQ})$

$\Rightarrow \operatorname{ar}(\mathrm{APQ})=\operatorname{ar}(\mathrm{PSA})+\operatorname{ar}(\mathrm{ARQ})$
Hence, area of $\triangle \mathrm{APQ}=$ area of $\triangle \mathrm{PSA}+$ area of $\triangle \mathrm{ARQ}$.
To sow wheat and pulses in equal portions of the field separately, farmer sow wheat in $\triangle \mathrm{APQ}$ and pulses in other two triangles or pulses in $\triangle \mathrm{APQ}$ and wheat in other two triangles. Ans.

EXERCISE 9.3
Q.1. In the figure, E is any point on median $A D$ of $a \triangle A B C$. Show that ar $(A B E)=a r(A C E)$.

Sol. Given : A triangle ABC, whose one median is $\mathrm{AD} . \mathrm{E}$ is a point on AD .
To Prove : ar $(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$
Proof : Area of $\triangle \mathrm{ABD}=$ Area of $\triangle \mathrm{ACD}$

... (i)
[Median divides the triangle into two equal parts] Again, in $\triangle \mathrm{EBC}, \mathrm{ED}$ is the median, therefore, Area of $\triangle \mathrm{EBD}=$ area of $\triangle \mathrm{ECD}$
[Median divides the triangle into two equal parts]
Subtracting (ii) from (i), we have
area of $\triangle \mathrm{ABD}$ - area of $\triangle \mathrm{EBD}=$ area of $\triangle \mathrm{ACD}-$ area of $\triangle \mathrm{ECD}$
\Rightarrow area of $\triangle \mathrm{ABE}=$ area of $\triangle \mathrm{ACE}$
$\Rightarrow \operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE})$ Proved.
Q.2. In a triangle $A B C, E$ is the mid-point on median $A D$. Show that ar (BED) $=\frac{1}{4} \operatorname{ar}(A B C)$.
Sol. Given : A triangle ABC , in which E is the mid-point of median AD .
To Prove $: \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$

Proof : In $\triangle A B C, A D$ is the median.
\therefore area of $\triangle \mathrm{ABD}=$ area of $\triangle \mathrm{ADC}$
[Median divides the triangle into two equal parts]
Again, in $\triangle \mathrm{ADB}, \mathrm{BE}$ is a median.
\therefore area of $\triangle \mathrm{ABE}=$ area of $\triangle \mathrm{BDE}$
From (i), we have
area of $\triangle \mathrm{ABD}=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$
From (ii), we have
area of $\triangle \mathrm{BED}=\frac{1}{2}$ area of $\triangle \mathrm{ABD}$

From (iii) and (iv), we have
area of $\triangle \mathrm{BED}=\frac{1}{2} \times \frac{1}{2}$ area of $\triangle \mathrm{ABC}$
\Rightarrow area of $\triangle \mathrm{BED}=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$
$\Rightarrow \operatorname{ar}(B E D)=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$ Proved.
Q.3. Show that the diagonals of a parallelogram divide it into four triangles of equal area.
Sol. Given : A parallelogram ABCD.
To Prove : area of $\triangle \mathrm{AOB}=$ area of $\triangle \mathrm{BOC}$

$$
=\text { area of } \triangle \mathrm{COD}=\text { area of } \triangle \mathrm{AOD}
$$

Proof : $\mathrm{AO}=\mathrm{OC}$ and $\mathrm{BO}=\mathrm{OD}$

[Diagonals of a parallelogram bisect each other]
In $\triangle \mathrm{ABC}, \mathrm{O}$ is mid-point of AC , therefore, BO is a median.
\therefore area of $\triangle \mathrm{AOB}=$ area of $\triangle \mathrm{BOC}$... (i)
[Median of a triangle divides it into two equal parts]
Similarly, in $\triangle \mathrm{CBD}, \mathrm{O}$ is mid-point of DB , therefore, OC is a median.
\therefore area of $\triangle \mathrm{BOC}=$ area of $\triangle \mathrm{DOC}$
... (ii)
Similarly, in $\triangle \mathrm{ADC}, \mathrm{O}$ is mid-point of AC , therefore, DO is a median.
\therefore area of $\triangle \mathrm{COD}=$ area of $\triangle \mathrm{DOA}$
... (iii)
From (i), (ii) and (iii), we have
area of $\triangle \mathrm{AOB}=$ area of $\triangle \mathrm{BOC}=$ area of $\triangle \mathrm{DOC}=$ area of $\triangle \mathrm{AOD}$ Proved.
Q.4. In the figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line-segment $C D$ is bsisected by $A B$ at O, show that ar $(A B C)=a r(A B D)$.
Sol. Given : ABC and ABD are two triangles on the same base $A B$ and line segment $C D$ is bisected by AB at O .
To Prove : ar $(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$
Proof : In $\triangle A C D$, we have

$\mathrm{CO}=\mathrm{OD}$
[Given]
\therefore AO is a median.
\therefore area of $\triangle \mathrm{AOC}=$ area of $\triangle \mathrm{AOD}$
[Median of a triangle divides it into two equal parts]

Similarly, in $\triangle B C D, O B$ is median
\therefore area of $\triangle \mathrm{BOC}=$ area of $\triangle \mathrm{BOD}$
Adding (i) and (ii), we get
area of $\triangle \mathrm{AOC}+$ area of $\triangle \mathrm{BOC}=$ area of $\triangle \mathrm{AOD}+$ area of $\triangle B O D$
\Rightarrow area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{ABD}$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$ Proved.
Q.5. D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$. Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(D E F)=\frac{1}{4} \operatorname{ar}(A B C)$
(iii) $\operatorname{ar}(B D E F)=\frac{1}{2} \operatorname{ar}(A B C)$

Sol. Given : D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$.
To Prove : (i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{BDEF})=\frac{1}{2}$ ar (ABC)

Proof : (i) In $\triangle A B C, E$ is the mid-point of $A C$ and F is the mid-point of $A B$.
$\therefore \mathrm{EF} \| \mathrm{BC}$ or $\mathrm{EF} \| \mathrm{BD}$
Similarly, DE || BF.
\therefore BDEF is a parallelogram
(ii) Since DF is a diagonal of parallelogram BDEF.

Therefore, area of $\triangle \mathrm{BDF}=$ area of $\triangle \mathrm{DEF}$
Similarly, area of $\triangle \mathrm{AFE}=$ area of $\triangle \mathrm{DEF}$
and area of $\triangle \mathrm{CDE}=$ area of $\triangle \mathrm{DEF}$
From (2), (3) and (4), we have
area of $\triangle \mathrm{BDF}=$ area of $\triangle \mathrm{AFE}=$ area of $\triangle \mathrm{CDE}=$ area of $\Delta \mathrm{DEF}$

Again $\triangle \mathrm{ABC}$ is divided into four non-overlapping triangles $\mathrm{BDF}, \mathrm{AFE}$, CDE and DEF.
\therefore area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{BDF}+$ area of $\triangle \mathrm{AFE}+$ area of $\triangle \mathrm{CDE}+$ area of $\triangle \mathrm{DEF}$ $=4$ area of $\triangle \mathrm{DEF}$
... (6) [Using (5)]
\Rightarrow area of $\triangle \mathrm{DEF}=\frac{1}{4}$ area of $\triangle \mathrm{ABC}$
$\Rightarrow \operatorname{ar}(\mathrm{DEF})=\frac{1}{4}$ ar (ABC) Proved.
(iii) Now, area of parallelogram $\mathrm{BDEF}=$ area of $\triangle \mathrm{BDF}+$ area of $\triangle \mathrm{DEF}$
$=2$ area of $\triangle \mathrm{DEF}$
$=2 \cdot \frac{1}{4}$ area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}$ area of $\triangle \mathrm{ABC}$
Hence, ar $(B D E F)=\frac{1}{2}$ ar $(A B C)$ Proved.
Q.6. In figure, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $A B=C D$, then show that :
(i) $\operatorname{ar}(D O C)=\operatorname{ar}(A O B)$
(ii) $\operatorname{ar}(D C B)=a r(A C B)$

(iii) $D A \| C D$ or $A B C D$ is a parallelogram.

Sol. Given : Diagonal AC and BD of quadrilateral ABCD intersect at O such that $O B=O D$ and $A B=C D$.
To Prove : (i) ar (DOC) = ar (AOB)
(ii) $\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $\mathrm{DA} \| \mathrm{CB}$ or ABCD is a parallelogram.
Construction : Draw perpendiculars DF and BE on AC .

Proof : (i) area of $\triangle \mathrm{DCO}=\frac{1}{2} \mathrm{CO} \times \mathrm{DF}$ area of $\triangle \mathrm{ABO}=\frac{1}{2} \mathrm{AO} \times \mathrm{BE}$
In $\triangle \mathrm{BEO}$ and $\triangle \mathrm{DFO}$, we have

$$
\begin{array}{rlrl}
\mathrm{BO} & =\mathrm{DO} & & {[\text { Given }]} \\
\angle \mathrm{BOE} & =\angle \mathrm{DOF} & & {[\text { Vertically opposite angles }]} \\
\angle \mathrm{BEO} & =\angle \mathrm{DFO} & & {\left[\text { Each }=90^{\circ}\right]} \\
\Rightarrow \quad \Delta \mathrm{BOE} \cong \triangle \mathrm{BOF} & & {[\text { SAS congruence }]} \\
\Rightarrow & \mathrm{BE} & =\mathrm{DF} & \\
{[\mathrm{CPCI}]} \tag{4}\\
& \mathrm{OE} & =\mathrm{OF} & \\
{[\mathrm{CPCT}]}
\end{array}
$$

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CDF}$, we have,

$$
\begin{align*}
& \mathrm{AB}=\mathrm{CD} \\
& \mathrm{BE}=\mathrm{DF} \\
& \angle \mathrm{AEB}=\angle \mathrm{CFD} \\
& \therefore \quad \triangle \mathrm{ABE} \cong \mathrm{CDF} \\
& \Rightarrow \quad \mathrm{AE}=\mathrm{CF} \tag{5}
\end{align*}
$$

[Given]
[Proved above]
[Each $=90^{\circ}$]
[RHS congruence]
[CPCT]
From (4) and (5), we have
$\mathrm{OE}+\mathrm{AE}=\mathrm{OF}+\mathrm{CF}$
$\Rightarrow \quad \mathrm{AO}=\mathrm{CO}$
Hence, $\operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) . \quad[$ From (1), (2), (3) and (6)] Proved.
(ii) In quadrilateral $\mathrm{ABCD}, \mathrm{AC}$ and BD are its diagonals, which intersect at 0 .
$\begin{array}{lll}\text { Also, } & \mathrm{BO}=\mathrm{OD} & \text { [Given] } \\ \mathrm{AO}=\mathrm{OC} & \text { [Proved above] }\end{array}$
[Diagonals of a quadrilateral bisect each other]
$\Rightarrow \mathrm{BC}|\mid \mathrm{AD}$.
So, $\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{DCB})$ Proved.
(iii) In (ii), we have proved that ABCD is a parallelogram.

Hence, ABCD is a parallelograms Proved.
Q.7. D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that ar $(D B C)=a r(E B C)$. Prove that $D E \| B C$.
Sol. Given : D and E are points on sides $A B$ and $A C$ respectively of $\triangle \mathrm{ABC}$ such that ar $(\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC})$ To Prove : DE || BC
Proof : ar $(\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC})$
[Given]
Also, triangles DBC and EBC are on the same base BC.
\therefore they are between the same parallels
i.e., DE || BC Proved.

[\because triangles on the same base and between the same parallels are equal in area]
Q.8. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \|$ $A B$ meet $X Y$ at E and F respectively, show that

$$
\operatorname{ar}(A B E)=\operatorname{ar}(A C F)
$$

Sol. Given : XY is a line parallel to side BC of a $\triangle \mathrm{ABC}$. $B E \| A C$ and $C F \| A B$
To Prove : ar (ABE) = ar (ACF)
Proof : $\triangle \mathrm{ABE}$ and parallelogram BCYE are on the same base BC and between the same parallels BE and AC.
$\therefore \operatorname{ar}(\mathrm{ABE})=\frac{1}{2} \operatorname{ar}(\mathrm{BCYE})$

Similarly,
$\operatorname{ar}(\mathrm{ACF})=\frac{1}{2} \operatorname{ar}(\mathrm{BCFX})$
But parallelogram BCYE and BCFX are on the same base BC and between the same parallels BC and EF.
\therefore ar (BCYE) $=$ ar (BCFX)
From (i), (ii) and (iii), we get
$\operatorname{ar}(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF})$ Proved .
Q.9. The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to $C P$ meets $C B$ produced at Q and then parallelogram $P B Q R$ is completed (see figure,). Show that ar $(A B C D)=\operatorname{ar}(P B Q R)$.
Sol. Given : $A B C D$ is a parallelogram.
CP || AQ, BP || QR, BQ || PR
To Prove : ar $(\mathrm{ABCD})=\operatorname{ar}(\mathrm{PBQR})$

Construction : Join AC and PQ.
Proof : AC is a diagonal of parallelogram ABCD.
\therefore area of $\triangle \mathrm{ABC}=\frac{1}{2}$ area of ABCD
[A diagonal divides the parallelogram into two parts of equal area]

Similarly, area of $\triangle \mathrm{PBQ}=\frac{1}{2}$ area of PBQR
Now, triangles AQC and AQP are on the same base AQ and between the same parallels AQ and CP.
\therefore area of $\triangle A Q C=$ area of $\triangle A Q P$
Subtracting area of $\triangle \mathrm{AQB}$ from both sides of (iii), area of $\triangle \mathrm{AQC}$ - area of $\triangle \mathrm{AQB}=$ area of $\triangle \mathrm{AQP}-$ area of $\triangle \mathrm{AQB}$
\Rightarrow area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{PBQ}$
... (iv)
$\Rightarrow \frac{1}{2}$ area of $\mathrm{ABCD}=\frac{1}{2}$ area of PBQR
[From (i) and (ii)]
\Rightarrow area of $\mathrm{ABCD}=$ area of PBQR Proved.
Q.10. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O. Prove that ar $(A O D)=a r(B O C)$.
Sol. Given : Diagonals AC and BD of a trapezium $A B C D$ with $A B \| D C$ intersect each other at O.
To Prove : ar (AOD) = ar (BOC)

Proof : Triangles ABC and BAD are on the same base AB and between the same parallels $A B$ and $D C$.
\therefore area of $\triangle A B C=$ area of $\triangle B A D$
\Rightarrow area of $\triangle \mathrm{ABC}-$ area of $\triangle \mathrm{AOB}=$ area of $\triangle \mathrm{ABD}$ - area of $\triangle \mathrm{AOB}$ [subtracting area of $\triangle A O B$ from both sides]
\Rightarrow area of $\triangle B O C=$ area of $\triangle \mathrm{AOD} \quad$ [From figure]
Hence, ar $(\mathrm{BOC})=\operatorname{ar}(\mathrm{AOD})$ Proved.
Q.11. In the Figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F. Show that
(i) $\operatorname{ar}(A C B)=\operatorname{ar}(A C F)$
(ii) ar $(A E D F)=\operatorname{ar}(A B C D E)$

Sol. Given : ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F.
To Prove : (i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Proof : (i) $\triangle A C B$ and $\triangle A C F$ lie on the same base $A C$ and between the same parallels AC and BF.
Therefore, ar $(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$ Proved.
(ii) So , $\operatorname{ar}(\mathrm{ACB})+\operatorname{ar}(\mathrm{ACDE})=\operatorname{ar}(\mathrm{ACF})+\operatorname{ar}(\mathrm{ACDE})$
[Adding same areas on both sides]
$\Rightarrow \operatorname{ar}(\mathrm{ABCDE})=\operatorname{ar}(\mathrm{AEDF})$ Proved.
Q.12. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
Sol. ABCD is the plot of land in the shape of a quadrilateral. From B draw BE \| AC to meet DC produced at E .

To Prove : ar $(\mathrm{ABCD})=\operatorname{ar}(\mathrm{ADE})$
Proof : \triangle BAC and \triangle EAC lie on the same base AC and between the same parallels AC and BE .
Therefore, ar $(\mathrm{BAC})=$ ar $(E A C)$
So, ar $(B A C)+\operatorname{ar}(A D C)=\operatorname{ar}(E A C)+\operatorname{ar}(A D C)$

[Adding same area on both sides]
or, $\operatorname{ar}(\mathrm{ABCD})=\operatorname{ar}(\mathrm{ADE})$
Hence, the gram Panchayat took over ABD and gave \triangle CEF.
Q.13. $A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y. Prove that ar $(A D X)=a r(A C Y)$.
Sol. Given : $A B C D$ is a trapezium with $A B \| D C$.
AC || XY.
To Prove : $\operatorname{ar}(\triangle \mathrm{ADX})=\operatorname{ar}(\Delta \mathrm{ACY})$.
Construction : Join XC
Proof : Since AB \| DC $\therefore \mathrm{AX} \| \mathrm{DC}$
$\Rightarrow \quad \operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{AXC})$
... (i)
(Having same base AX and between same parallels)
Since AC \| XY
$\Rightarrow \quad \operatorname{ar}(\mathrm{AXC})=\operatorname{ar}(\mathrm{ACY})$
(Having same base AC and between same parallels)
$\Rightarrow \quad \operatorname{ar}(\mathrm{ADX})=\operatorname{ar}(\mathrm{ACY}) \quad[$ From (i), (ii)] Proved.
Q.14. In the figure, $A P\|B Q\| C R$. Prove that $\operatorname{ar}(A Q C)=\operatorname{ar}(P B R)$.

Sol. Given : In figure, $\mathrm{AP}\|\mathrm{BQ}\| \mathrm{CR}$.
To Prove : ar $(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$
Proof : Triangles $A B Q$ and $P B Q$ are on the same base BQ and between the same parallels AP and BQ.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\mathrm{ABQ})=\operatorname{ar}(\mathrm{PBQ}) \tag{1}
\end{equation*}
$$

[Triangles on the same base and between the same parallels are equal in area] Similarly triangle BQC and BQR on the same base BQ and between the same parallels BQ and CR
$\therefore \quad \operatorname{ar}(\mathrm{BQC})=\operatorname{ar}(\mathrm{BQR})$
... (2) [Same reason]
Adding (1) and (2), we get
$\operatorname{ar}(\mathrm{ABQ})+\operatorname{ar}(\mathrm{BQC})=\operatorname{ar}(\mathrm{PBQ})+\operatorname{ar}(\mathrm{BQR})$
$\Rightarrow \operatorname{ar}(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$. Proved.
Q.15. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that ar $(A O D)=$ ar $(B O C)$. Prove that $A B C D$ is a trapezium.
Sol. Given : Diagonals AC and BD of a quadrilateral ABCD intersect at O , such that $\operatorname{ar}(\mathrm{AOD})=\operatorname{ar}(\mathrm{BOC})$
To Prove : ABCD is a trapezium.
Proof : $\operatorname{ar}(\triangle \mathrm{AOD})=\operatorname{ar}(\triangle \mathrm{BOC})$

$\Rightarrow \quad \operatorname{ar}(\mathrm{AOD})+\operatorname{ar}(\mathrm{BOA})=\operatorname{ar}(\mathrm{BOC})+\operatorname{ar}(\mathrm{BOA})$
$\Rightarrow \quad \operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ABC})$

But, triangle ABD and ABC are on the same base AB and have equal area.
\therefore they are between the same parallels,
i.e., $A B \| D C$

Hence, ABCD is a trapezium. [\because A pair of opposite sides is parallel]
Proved.
Q.16. In the figure, ar $(D R C)=\operatorname{ar}(D P C)$ and $\operatorname{ar}(B D P)=$ ar (ARC). Show that both the quadrilaterals $A B C D$ and $D C P R$ are trapeziums.
Sol. Given : $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$ and $\operatorname{ar}(\mathrm{BDP})=$ ar (ARC)
To Prove : ABCD and DCPR are trapeziums.

Proof : ar $(\mathrm{BDP})=\operatorname{ar}(\mathrm{ARC})$
$\Rightarrow \quad \operatorname{ar}(\mathrm{DPC})+\operatorname{ar}(\mathrm{BCD})=\operatorname{ar}(\mathrm{DRC}+\operatorname{ar}(\mathrm{ACD})$
$\Rightarrow \quad \operatorname{ar}(\mathrm{BCD})=\operatorname{ar}(\mathrm{ACD}) \quad[\because \operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})]$
But, triangles BCD and ACD are on the same base CD.
\therefore they are between the same parallels,
i.e., $A B \| D C$

Hence, ABCD is a trapezium.
... (i) Proved.
Also, ar $(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC}) \quad$ [Given]
Since, triangles DRC and DPC are on the same base CD.
\therefore they are between the same parallels,
i.e., $\quad \mathrm{DC} \| \mathrm{RP}$

Hence, DCPR is a trapezium
... (ii) Proved.

EXERCISE 9.4 (Optional)

Q.1. Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
Sol. Given : A parallelogram ABCD and a rectangle $A B E F$ having same base and equal area
To Prove : $2(\mathrm{AB}+\mathrm{BC})>2(\mathrm{AB}+\mathrm{BE})$
Proof : Since the parallelogram and the rectangle have same base and equal area,
 therefore, their attitudes are equal.
Now perimeter of parallelogram ABCD .

$$
\begin{equation*}
=2(\mathrm{AB}+\mathrm{BC}) \tag{i}
\end{equation*}
$$

and perimeter of rectangle ABEF

$$
\begin{equation*}
=2(\mathrm{AB}+\mathrm{BE}) \tag{ii}
\end{equation*}
$$

In $\triangle \mathrm{BEC}, \angle \mathrm{BEC}=90^{\circ}$
$\therefore \angle \mathrm{BCE}$ is an acute angle.
$\therefore \mathrm{BE}<\mathrm{BC}$
... (iii) [Side opposite to smaller angle is smaller]
\therefore From (i), (ii) and (iii) we have
$2(A B+B C)>2(A B+B E)$ Proved.

Q.2. In figure, D and E are two points on $B C$ such that $B D$ $=D E=E C$. Show that ar $(A B D)=$ ar $(A D E)=$ ar (AEC).
Can you now answer the question that you have left the 'Introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

[Remark: Note that by taking $B D=D E=C E$, the triangle $A B C$ is divided into three triangles $A B D, A D E$ and $A E C$ of equal areas. In the same way, by dividing $B C$ into n equal parts and joining the points of division so obtained to the opposite vertex of $B C$, you can divide $\triangle A B C$ into n triangles of equal areas.]
Sol. Given : A triangle ABC , in which D and E are the two points on BC such that $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$
To Prove : ar $(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$
Construction : Draw AN \perp BC
Now, ar $(\mathrm{ABD})=\frac{1}{2} \times$ base \times altitude $($ of $\triangle \mathrm{ABD})$

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{BD} \times \mathrm{AN} \\
& =\frac{1}{2} \times \mathrm{DE} \times \mathrm{AN} \\
& =\frac{1}{2} \times \text { base } \times \text { altitude }(\text { of } \triangle \mathrm{ADE}) \\
& =\operatorname{ar}(\mathrm{ADE})
\end{aligned}
$$

$$
[\mathrm{As} \mathrm{BD}=\mathrm{DE}]
$$

Similarly, we can prove that
$\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$
Hence, $\operatorname{ar}(\mathrm{ABD})=\operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$ Proved.
Q.3. In the figure, $A B C D, D C F E$ and $A B F E$ are parallelograms. Show that ar (ADE) = $\operatorname{ar}(B C F)$

Sol. Given : Three parallelograms ABCD, DCFE and ABFE.
To Prove : ar (ADE) = ar (BCF)
Construction : Produce DC to intersect BF at G .

Proof : $\angle \mathrm{ADC}=\angle \mathrm{BCG}$
[Corresponding angles] $\angle \mathrm{EDC}=\angle \mathrm{FCG}$
[Corresponding angles]
$\Rightarrow \quad \angle \mathrm{ADC}+\angle \mathrm{EDC}=\angle \mathrm{BCG}+\angle \mathrm{FCG} \quad[\mathrm{By}$ adding (i) and (ii)]
$\Rightarrow \angle \mathrm{ADE}=\angle \mathrm{BCF}$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$, we have
$\mathrm{AD}=\mathrm{BC}$
[Opposite sides of || gm ABCD]
$\mathrm{DE}=\mathrm{CF}$
[Opposite sides of $\|$ gm DCEF]

$$
\begin{aligned}
& \angle \mathrm{ADE}=\angle \mathrm{BCF} \\
\therefore & \triangle \mathrm{ADE} \cong \triangle \mathrm{BCF} \\
\Rightarrow & \operatorname{ar}(\mathrm{ADE})=\operatorname{ar}(\mathrm{BCF})
\end{aligned}
$$

[From (iii)]
[SAS congruence]
[Congruent triangles are equal in area] Proved.
Q.4. In the figure, $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$. If $A Q$ intersects $D C$ at P, show that $\operatorname{ar}(B P C)=\operatorname{ar}(D P Q)$.
Sol. Given : ABCD is a parallelogram, in which BC is produced to a point Q such that $A D=C Q$ and $A Q$ intersects DC at P.
To Prove : $\operatorname{ar}(\mathrm{BPC})=\operatorname{ar}(\mathrm{DPQ})$
Construction : Join AC.
Proof : Since $A D\|B C \quad \Rightarrow A D\| B Q$
$\operatorname{ar}(\triangle \mathrm{ADC})=\operatorname{ar}(\triangle \mathrm{ADQ})$
[Having same base AD and between same parallel]
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ADP})+\operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle \mathrm{ADP})+\operatorname{ar}(\triangle \mathrm{DPQ})$
[From figure]
$\Rightarrow \operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle \mathrm{DPQ})$
Now, since $A B\|D C \Rightarrow A B\| P C$
$\operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle \mathrm{BPC})$
[Having same base PC and between same parallels] $\Rightarrow \operatorname{ar}(\triangle \mathrm{BPC},=\operatorname{ar}(\triangle \mathrm{DPQ})$ [From (i) and (ii)] Proved.

Q.5. In figugre, $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of BC. IF AE intersects BC at F, show that
(i) $\operatorname{ar}(B D E)=\frac{1}{4} \operatorname{ar}(A B C)$
(ii) $\operatorname{ar}(B D E)=\frac{1}{2} \operatorname{ar}(A B C)$
(iii) $\operatorname{ar}(A B C)=2 \operatorname{ar}(B E C)$
(iv) $\operatorname{ar}(B E F=a r(A F D)$
(v) $\operatorname{ar}(B F E)=2 \operatorname{ar}(F E D)$
(vi) ar (FED) $=\frac{1}{8} \operatorname{ar}$ (AFC)

[Hint: Join EC and $A D$. Show that $B E \| A C$ and $D E \| A B$, etc.]
Sol. Given : ABC and BDE are equilateral triangles, D is the mid-point of BC and AE intersects BC at F .
Construction : Join AD abd EC.
Proof : $\angle \mathrm{ACB}=60^{\circ}$
[Angle of an equilateral triangle]
$\angle \mathrm{EBC}=60^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{EBC}$
[Same reason]
$\Rightarrow \mathrm{AC}|\mid \mathrm{BE} \quad$ [Alternate angle are equal]
Similarly, we can prove that $\mathrm{AB} \| \mathrm{DE}$
(i) D is the mid-point of BC , so AD is a median of $\triangle \mathrm{ABC}$

$\therefore \operatorname{ar}(\mathrm{ABD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC})$


```
\(\operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{DEA}) \quad[\) Triangles on the same base DE
                                and between the same parallels DE and AB ]
\(\Rightarrow \operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{ADF})+\operatorname{ar}(\mathrm{DEF})\)

Also, \(\operatorname{ar}(\mathrm{DEB})=\frac{1}{2} \operatorname{ar}(\mathrm{BEC}) \quad\) [DE is a median]
\(\Rightarrow \quad=\frac{1}{2} \operatorname{ar}(\mathrm{BEA}) \quad\) [Triangles on the same base DE and between the same parallels BE and AC ]
\(\Rightarrow \quad 2 \operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{BEA})\)
\(\Rightarrow \quad 2 \operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{ABF})+\operatorname{ar}(\mathrm{BEF})\)
Adding (4) and (6), we get
\(3 \operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{ADF})+\operatorname{ar}(\mathrm{DEF})+\operatorname{ar}(\mathrm{ABF})+\operatorname{ar}(\mathrm{BEF})\)
\(\Rightarrow \quad 3 \operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{ADF})+\operatorname{ar}(\mathrm{ABF})+\operatorname{ar}(\mathrm{DEF})+\operatorname{ar}(\mathrm{BEF})\) \(=\operatorname{ar}(\mathrm{ABD})+\operatorname{ar}(\mathrm{BDE})\)
\(\Rightarrow \quad 2 \operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{ABD})\)
\(\Rightarrow \quad \operatorname{ar}(\mathrm{DEB})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \quad[\) From (3)]
\(\Rightarrow \quad \operatorname{ar}(\mathrm{DEB})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC})\) Proved.
(ii) From (5) above, we have
\(\operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE})\) Proved.
(iii) \(\operatorname{ar}(\mathrm{DEB})=\frac{1}{2} \operatorname{ar}(\mathrm{BEC})\)
[DE is a median]
\[
\begin{aligned}
& \Rightarrow \quad \frac{1}{4} \operatorname{ar}(\mathrm{ABC})=\operatorname{ar} \frac{1}{2}(\mathrm{BEC}) \quad[\text { From part (i)] } \\
& \Rightarrow \quad \operatorname{ar}(\mathrm{ABC})=2 \operatorname{ar}(\mathrm{BEC}) \text { Proved. }
\end{aligned}
\]
(iv) \(\operatorname{ar}(\mathrm{DEB})=\operatorname{ar}(\mathrm{BEA})\)
[Triangles on the same base DE and between the same parallels DE AB]
\(\Rightarrow \quad \operatorname{ar}(\mathrm{DEB})-\operatorname{ar}(\mathrm{DEF})=\operatorname{ar}(\mathrm{DEA})-\operatorname{ar}(\mathrm{DEF})\)
(v)
\(\Rightarrow \quad \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD})\) Proved.
*****
(vi) From (v), we have \(\operatorname{ar}(\mathrm{FED})=\frac{1}{2} \operatorname{ar}(\mathrm{BFE})\)
\[
\begin{aligned}
& =\frac{1}{2} \operatorname{ar}(\mathrm{AFD}) \quad \text { [From part (iv)] } \\
\text { Now } \operatorname{ar}(\mathrm{AFC}) & =\operatorname{ar}(\mathrm{AFD})+\operatorname{ar}(\mathrm{ADC}) \\
& =\operatorname{ar}(\mathrm{AFD})+\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \quad \text { [BE is a median] } \\
& =\operatorname{ar}(\mathrm{AFD})+2 \operatorname{ar}(\mathrm{BDE}) \quad \text { [From part (i)] } \\
& =\operatorname{ar}(\mathrm{AFD})+2 \operatorname{ar}(\mathrm{ADE}) \\
& =\operatorname{ar}(\mathrm{AFD})+2 \operatorname{ar}(\mathrm{AFD})+2 \operatorname{ar}(\mathrm{DEF}) \\
& =3 \operatorname{ar}(\mathrm{AFD})+\operatorname{ar}(\mathrm{BFE}) \quad \text { [From part (v)] } \\
& =3 \operatorname{ar}(\mathrm{AFD})+\operatorname{ar}(\mathrm{AFD}) \quad \text { [From part (iv)] } \\
& =4 \operatorname{ar}(\mathrm{AFD}) \\
& \\
\therefore \frac{1}{8} \operatorname{ar}(\mathrm{AFC}) & =\frac{1}{2} \operatorname{ar}(\mathrm{AFD}) \\
& =\operatorname{ar}(\mathrm{FED}) \quad \text { (From above] Proved. }
\end{aligned}
\]
Q.6. Diagonals \(A C\) and \(B D\) of a quadrilateral \(A B C D\) intersect each other at \(P\).

Show that \(\operatorname{ar}(A P B) \times \operatorname{ar}(C P D)=a r(A P D) \times a r(B P C)\).
Hint : From A and C, draw perpendiculars to BD.]
Sol. Given : AB CD is a quadrilateral whose diagonals intersect each other at \(P\).
Construction : Draw \(\mathrm{AE} \perp \mathrm{BD}\) and \(\mathrm{CF} \perp \mathrm{BD}\).
Proof : \(\operatorname{ar}(\mathrm{APB})=\frac{1}{2} \times \mathrm{PB} \times \mathrm{AE}\)
\(\operatorname{ar}(\mathrm{CPD})=\frac{1}{2} \times \mathrm{DP} \times \mathrm{CF}\)


Now, \(\operatorname{ar}(\mathrm{BPC})=\frac{1}{2} \times \mathrm{BP} \times \mathrm{CF}\)
\(\operatorname{ar}(\mathrm{APD})=\frac{1}{2} \times \mathrm{DP} \times \mathrm{AE}\)
From (i) and (ii),
\(\operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\frac{1}{4} \times \mathrm{PB} \times \mathrm{DP} \times \mathrm{AE} \times \mathrm{CF}\)
From (iii) and (iv), we have
\(\operatorname{ar}(\mathrm{BPC}) \times \operatorname{ar}(\mathrm{APD})=\frac{1}{4} \times \mathrm{BP} \times \mathrm{DP} \times \mathrm{CF} \times \mathrm{AE}\)
\(\therefore \operatorname{ar}(\mathrm{APB}) \times \operatorname{ar}(\mathrm{CPD})=\operatorname{ar}(\mathrm{BPC}) \times \operatorname{ar}(\mathrm{APD})\)
[From (v) and (vi)] proved
Q.7. \(P\) and \(Q\) are respectively the mid-points of sides \(A B\) and \(B C\) of a triangle \(A B C\) and \(R\) is the mid-point of \(A P\), show that
(i) \(\operatorname{ar}(P Q R)=\frac{1}{2} \operatorname{ar}(A R C)\)
(ii) \(\operatorname{ar}(R Q C)=\frac{3}{8} \operatorname{ar}(A B C)\)
(iii) \(\operatorname{ar}(P B Q)=\operatorname{ar}(A R C)\)

Sol. Given : A triangle \(\mathrm{ABC}, \mathrm{P}\) and Q are mid-points of \(A B\) and \(B C, R\) is the mid point of \(A P\).
Proof : CP is a median of \(\triangle \mathrm{ABC}\)
\(\Rightarrow \operatorname{ar}(\mathrm{APC})=\operatorname{ar}(\mathrm{PBC})=\operatorname{ar} \frac{1}{2}(\mathrm{ABC})\)
median divides a triangle into two
triangles of equal area]
CR is a median of \(\triangle \mathrm{APC}\)

\(\therefore \operatorname{ar}(\mathrm{ARC})=\operatorname{ar}(\mathrm{PRC})=\frac{1}{2} \operatorname{ar}(\mathrm{APC})\)
QR is a median of \(\triangle \mathrm{APQ}\).
\(\therefore \operatorname{ar}(\mathrm{ARQ})=\operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{APQ})\)
PQ is a median of \(\triangle \mathrm{PBC}\)
\(\therefore \operatorname{ar}(\mathrm{PQC})=\operatorname{ar}(\mathrm{PQB})=\frac{1}{2} \operatorname{ar}(\mathrm{PBC})\)
PQ is a median of \(\triangle \mathrm{RBC}\)
\[
\begin{equation*}
\operatorname{ar}(\mathrm{RQC})=\operatorname{ar}(\mathrm{PQC})=\frac{1}{2} \operatorname{ar}(\mathrm{RBC}) \tag{5}
\end{equation*}
\]
(i) \(\operatorname{ar}(\mathrm{PQA})=\operatorname{ar}(\mathrm{PQC}) \quad[\) Triangles on the same base PQ and between the same parallels PQ and AC\(]\)
\[
\begin{array}{ll}
\Rightarrow \operatorname{ar}(\mathrm{ARQ})+\operatorname{ar}(\mathrm{PQR})=\frac{1}{2} \operatorname{ar}(\mathrm{PBC}) & {[\text { From }(4)]} \\
\Rightarrow \operatorname{ar}(\mathrm{PRQ})+\operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{APC}) & {[\text { From }(3) \text { and }(1)]} \\
\Rightarrow 2 \operatorname{ar}(\mathrm{PRQ})=\operatorname{ar}(\mathrm{ARC}) & {[\text { From }(2)]} \\
\Rightarrow \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \text { Proved. } &
\end{array}
\]
(ii) From (5), we have
\[
\begin{array}{rlrl}
\operatorname{ar}(\mathrm{RQC}) & =\frac{1}{2} \operatorname{ar}(\mathrm{RBC}) \\
& =\frac{1}{2} \operatorname{ar}(\mathrm{PBC})+\frac{1}{2} \operatorname{ar}(\mathrm{PRC}) & \\
& =\frac{1}{4} \operatorname{ar}(\mathrm{ABC})+\frac{1}{4} \operatorname{ar}(\mathrm{APC}) & & {[\text { From (1) and (2)] }} \\
& =\frac{1}{4} \operatorname{ar}(\mathrm{ABC})+\frac{1}{8} \operatorname{ar}(\mathrm{ABC}) & & {[\text { From (1)] }} \\
& =\operatorname{ar}(\mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\mathrm{ABC}) & & \text { Proved. }
\end{array}
\]
\[
\text { (iii) } \operatorname{ar}(\mathrm{PBQ})=\frac{1}{2} \operatorname{ar}(\mathrm{PBC}) \quad[\text { From }(4)]
\]
\[
=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \quad[\text { From }(1)]
\]
[From (2)]
\[
\begin{equation*}
=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \tag{7}
\end{equation*}
\]

From (6) and (7) we have \(\operatorname{ar}(\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC})\) Proved.
Q.8. In figure, \(A B C\) is a right triangle right angled at \(A\). BCED, ACFG and \(A B M N\) are squares on the sides \(B C, C A\) and \(A B\) respectively. Line segment \(A X \perp D E\) meets \(B C\) at \(Y\). Show that :
(i) \(\triangle M B C \cong \triangle A B D\)
(ii) \(\operatorname{ar}(B Y X D)=2 \operatorname{ar}(M B C)\)
(iii) \(\operatorname{ar}(B Y X D)=\operatorname{ar}(A B M N)\)
(iv) \(\triangle F C B \cong \triangle A C E\)
(v) \(\operatorname{ar}(C Y X E)=2 \operatorname{ar}(F C B)\)

(vi) \(\operatorname{ar}(C Y X E)=\operatorname{ar}(A C F G)\)
(vii) \(\operatorname{ar}(B C E D))=\operatorname{ar}(A D M N+\operatorname{ar}(A C F G)\)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class \(X\).
Sol. (i) In DMBC and \(\triangle \mathrm{ABD}\), we have
\[
\begin{aligned}
& \mathrm{MB}=\mathrm{AB} \\
& \mathrm{BC}=\mathrm{BD} \\
& \angle \mathrm{MBC}=\angle \mathrm{ABD} \\
& {[\text { Sides of a square }] } \\
& {\left[\angle \mathrm{MBC}=90^{\circ}+\angle \mathrm{ABC},\right. \text { and }} \\
\therefore \Delta \mathrm{MBC} \cong \triangle \mathrm{ABD} & \left.\angle \mathrm{ABC}=90^{\circ}+\angle \mathrm{ABC}\right] \\
\text { (ii) } & \operatorname{ar}(\Delta \mathrm{MBC}) \cong \operatorname{ar}(\mathrm{ABD})
\end{aligned}
\]
\(\Rightarrow \frac{1}{2} \times \mathrm{BC} \times\) height \(=\frac{1}{2} \times \mathrm{BD} \times \mathrm{BY}\)
\(\Rightarrow\) Height of \(\triangle \mathrm{MBC}=\mathrm{BY} \quad[\mathrm{BC}=\mathrm{BD}]\)
\(\therefore \operatorname{ar}(\mathrm{MBC})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{BY}\)
\(\Rightarrow\) Height of \(\triangle \mathrm{MBC}=\mathrm{BY} \quad[\mathrm{BC}=\mathrm{BD}]\)
\(\therefore \operatorname{ar}(\mathrm{MBC})=\frac{1}{2} \times \mathrm{BC} \times \mathrm{BY}\)
\(\Rightarrow 2 \operatorname{ar}(\mathrm{MBC})=\mathrm{BC} \times \mathrm{BY}\)
Also, \(\operatorname{ar}(\mathrm{BY} \times \mathrm{D})=\mathrm{BD} \times \mathrm{BY}\) \(=\mathrm{BC} \times \mathrm{BY} \quad[\mathrm{BC}=\mathrm{BD}]\)
From (1) and (2), we have \(\operatorname{ar}(\mathrm{BY} \times \mathrm{D})=\operatorname{ar}(\mathrm{MBC})\) Proved.
(iii) \(\operatorname{ar}(\mathrm{BY} \times \mathrm{D})=2 \cdot \operatorname{ar}(\mathrm{MBC}) \quad[\) From part (ii)]
\[
\begin{array}{rlr} 
& =2 \times \frac{1}{2} \times \mathrm{MB} \times \text { height of } \mathrm{MBC} \text { corresponding to } \mathrm{BC} \\
& =\mathrm{MB} \times \mathrm{AB} & {[\mathrm{MB}|\mid \mathrm{NC} \text { and } \mathrm{AB} \perp \mathrm{MB}]} \\
& =\mathrm{AB} \times \mathrm{AB} & {[\because \mathrm{AB}=\mathrm{MB}]} \\
& =A B^{2} & \\
\Rightarrow \operatorname{ar}(\mathrm{BY} \times & \mathrm{D}) & =\operatorname{ar}(\mathrm{ABMN}) \text { Proved. }
\end{array}
\]
(iv) In \(\triangle \mathrm{FCB}\) and \(\triangle \mathrm{ACR}\), we have
\[
\begin{array}{ll}
\mathrm{FC}=\mathrm{AC} & \text { [Sides of a square }] \\
\mathrm{BC}=\mathrm{CE} & \text { [Sides of a square] } \\
\angle \mathrm{FCB} \cong \triangle \mathrm{ACE} & {[\text { SAS congruence }] \text { Proved. }}
\end{array}
\]
(v) \(\frac{1}{2} \times \mathrm{BC} \times\) height \(=\frac{1}{2} \times \mathrm{CE} \times \mathrm{CY}\)
\(\Rightarrow\) Height of \(\triangle \mathrm{FCB}=\mathrm{CY} \quad[\mathrm{BC}=\mathrm{CE}]\)
\(\therefore \operatorname{ar}[\mathrm{FCB}]=\frac{1}{2} \times \mathrm{BC} \times \mathrm{CY}\)
\(\Rightarrow 2 \mathrm{ar}[\mathrm{FCB}]=\mathrm{BC} \times \mathrm{CY}\)
Also, ar \((\mathrm{CYXE})=\mathrm{CE} \times \mathrm{CY}\)
\(=\mathrm{BC} \times \mathrm{CY}\)
From (3) and (4), we have \(\operatorname{ar}(\mathrm{CYXE})=2\) ar (FCB) Proved.
(vi) \(\quad \operatorname{ar}(\mathrm{CYXE})=2 \times \frac{1}{2} \times \mathrm{FC} \times\) height of \(\triangle \mathrm{FCB}\) corresponding to FC
\(=\mathrm{FC} \times \mathrm{AC} \quad[\mathrm{FC}| | \mathrm{GB}\) and \(\mathrm{AC} \perp \mathrm{FC}]\)
\(=\mathrm{AC} \times \mathrm{AC} \quad[\mathrm{AC}=\mathrm{FC}]\)
\(=\mathrm{AC}^{2}\)
\(\Rightarrow 2 \operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG})\) Proved.
(vii) From (iii) and (vi), we have
\(\operatorname{ar}(\mathrm{BYXD})+\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})\)
\(\Rightarrow \operatorname{ar}(\mathrm{BCED})+\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})\) Proved.


Chase Excellence```

