Class-IX Math Chapter: Area of Parallelogram and Triangles Test Guess question-2

26. In a parallelogram, E and F are the mid- points of sides of $A B$ and $C D$ respectively. Show that the line segments $A F$ and $E C$ trisect the diagonal BD.
27. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angle, then it is a square.
28. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$.

Show that: (i) $\triangle A P B \cong \triangle C Q D$ (ii) $A P=C Q$
29. $A B C$ is a triangle, $A D$ is a median and E is the mid- point of $A D$. $B E$ is joined and produced to intersect $A C$ in a point F. Prove that $A F=\frac{1}{3} A C$.
30. $A B C D$ is a parallelogram in which P and Q are mid- points of opposite sides $A B$ and $C D$. If $A Q$ intersects $D P$ at S and $B Q$ intersects $C R$ at R, show that:
(i) $A P C Q$ is a parallelogram. (i) $D P B Q$ is a parallelogram. (i) PSQR is a parallelogram.
31. $A B C D$ is a parallelogram and X and Y are the mid- points of the sides $A B$ and $D C$ respectively. Show that $A X C Y$ is a parallelogram.
32. Bisectors of $\angle B$ and $\angle D$ of quadrilateral $A B C D$ meet $C D$ and $A B$ produced at P and Q respectively.

Prove that $\angle \mathrm{P}+\angle \mathrm{D}=\frac{1}{2}(\angle \mathrm{ABC}+\angle \mathrm{ADC})$
33. $A B C D$ is a rhombus and P, Q, R and S are the mid- points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rectangle.
34. Two segments $A C$ and $B D$ bisect each other at O. Show that the $A B C D$ is a parallelogram.
35. $A B C D$ is a rectangle in which diagonal $A C$ bisects $\angle A$ as well as $\angle C$. Show that (i) $A B C D$ is a square (ii) diagonal $B D$ bisects $\angle B$ as well as $\angle D$
36. $A B C D$ is a rectangle and P, Q, R and S are mid- points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
37. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$.

Show that: (i) $\triangle A P D \cong \triangle C Q B$ (ii) $A P=C Q$ (iii) $\triangle A Q B \cong \triangle C P D$ (iv) $A Q=C P$
38. In trapezium $A B C D, A B \| C D$ and $A D=B C$. Show that: (i) $\angle A=\angle B$ (ii) $\angle C=\angle D$ (iii) $\triangle A B C \cong \triangle B A D$ (iv) $A C=B D$
39. Two parallel lines I and m are intersected by a transversal line p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
40. Show that the line segment joining the mid- points of two sides of a triangle is parallel to third side and half of third side.
41. Show that the bisectors of angles of a parallelogram form a rectangle.
42. In quadrilateral $A B C D, \angle B=130^{\circ}, \angle C=60^{\circ}$, angle bisectors of $\angle A$ and $\angle D$ meet at P. Find $\angle A P D$.
43. Prove that the quadrilateral obtained by joining the mid- points of consecutive sides of a quadrilateral is a parallelogram.
44. $A B C$ is an isosceles triangle in which $A B=A C$. $A D$ bisects exterior angle $P A C$ and $C D \| A B$. Show that (i) $\angle D A C=$ $\angle B C A$ (ii) $A B C D$ is a parallelogram.
45. $A B C D$ is a square and on the side $D C$, an equilateral triangle is constructed. Prove that $A E=B E$ and $\angle D A E=15^{\circ}$. 46. P, Q, R and S are respectively the mid- points of the sides $A, B C, C D$ and $D A$ of a quadrilateral $A B C D$ such that $A C$ is perpendicular to $B D$. Prove that $P Q R S$ is a square.
47. In $\triangle A B C, D, E$ and F are respectively the mid- points of the sides $A B, B C$ and $C A$. Show that $\triangle A B C$ is divided into four congruent triangles by joining D, E and F.

