	ACBSE Coaching for Mathematics and Science	
	संकलित परीक्षा - I, 2014 KAAP9E5 SUMMATIVE ASSESSMENT - I, 2014 गणित / MATHEMATICS कक्षा - IX / Class - IX SECTION - A	
	Question numbers 1 to 4 carry 1 mark each.	
1	Find the product $\sqrt[3]{2}$. $\sqrt[4]{2}$. $\sqrt[12]{32}$.	1
2	Find one factor of $(9x^2 - 1) - (1 + 3x)^2$.	1
3	An exterior angle of a triangle measures 140°. If the interior opposite angles are in the ratio 3 : 1	1
	then find the angles of the triangle.	
4	What is the <i>x</i> -co odinate of any point on the <i>y</i> -axis ?	1
	SECTION - B	
	Question numbers 5 to 10 carry 2 marks each.	
5	Insert three rational numbers between $\frac{3}{5}$ and $\frac{5}{7}$.	2
6	For what value of k is the polynomial $p(x) = 2x^3 - kx^2 + 3x + 10$ exactly divisible by $(x + 2)$?	2
7	In figure C is the mid-point of AB and D is the midpoint of AC. Prove that	2
	$AD = \frac{1}{4}AB.$ \overrightarrow{A} \overrightarrow{D} \overrightarrow{C} \overrightarrow{B}	
8	In figure, if lines PQ and RS intersect at point T, such that $\angle PRT = 50^\circ$, $\angle TSQ = 60^\circ$ and	2
	\angle RPT = 100°, find \angle SQT.	

	ACBSE Coaching for Mathematics and Science	
	R T S Q T Q S Q T Q S Q S Q S Q Q S S S Q S S S Q S S S Q S	
9	If a point P(2, 3) lies in first quadrant, then what will be the co-ordinates of a point Q opposite to it in fourth quadrant having equal distance from x -axis ?	2
10	The semi-perimeter of a triangle is 132 cm. The product of the difference of semi-perimeter and its respective sides is 13200 cm ³ . Find the area of the triangle.	2
	SECTION - C	
	Question numbers 11 to 20 carry 3 marks each.	
11	If $\frac{1+\sqrt{2}}{1-\sqrt{2}} + \frac{1-\sqrt{2}}{1+\sqrt{2}} = a + b\sqrt{2}$, then find a and b.	3
12	Find the value of a and b if $\frac{5+\sqrt{3}}{7-4\sqrt{3}} = a + b\sqrt{3}$.	3
13	If $a - b = 7$ and $a^2 + b^2 = 85$, find $a^3 - b^3$.	3
14	If $x + a$ is a factor of $x^4 - a^2x^2 + 3x - a$, then find the value of a.	3
15	ABCD is a square. X and Y are points on the sides AD and BC such that AY= BX. Prove that $\angle XAY = \angle YBX$	3
16	In the given figure $\triangle ABC$ and $\triangle DBC$ are two triangles on the same base BC and vertices A and D are on the same side of BC, AD is extended to intersect BC at P. Show that : (i) $\triangle ABD \cong \triangle ACD$ (ii) $\triangle ABP \cong \triangle ACP$	3

	ACBSE Coaching for Mathematics and Science	
	Priya for this goodwill. How Varun simplified $\frac{1}{\sqrt{7}-\sqrt{3}}$? What value does it indicate ?	
22	Prove that: $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{8}+3} = 2$	4
23	Simplify $\frac{(a^2-b^2)^3 + (b^2-c^2)^3 + (c^2-a^2)^3}{(a-b)^3 + (b-c)^3 + (c-a)^3}$	4
24	Without actual division prove that $x^4 + 2x^3 - 2x^2 + 2x - 3$ is exactly divisible by $x^2 + 2x - 3$.	4
25	Show by long division that $2x + 3$ is a factor of $p(x) = 4x^4 + 8x^3 + 5x^2 + x - 3$.	4
26	Find the value of k, if $(x - 3)$ is a factor of $p(x) = 2x^3 - 5x^2 + 3x + k$.	4
27	Show that the perimeter of a Δ is greater than the sum of its three medians.	4
28	Prove that the sum of three angles of a triangle is 180°. Using this result, find the value of <i>x</i> and all three angles of a triangle if the angles are $(2x - 7)^\circ$, $(x + 25)^\circ$ and $(3x + 12)^\circ$.	4
29	Prove that the angles opposite to equal sides of a triangle are equal.	4
30	In the given figure AB is a line segment and p is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that : (i) $\Delta DAP \cong \Delta EBP$, (ii) $AD = BE$ E A P B	4
31	If two lines intersect each other, then prove that the vertically opposite angles are equal.	4