संकलित परीक्षा - I, 2014
 KAAP9E5
 SUMMATIVE ASSESSMENT - I, 2014
 गणित / MATHEMATICS
 कक्षा - IX / Class - IX

SECTION - A

Question numbers 1 to 4 carry 1 mark each.

1 Find the product $\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32}$.

2 Find one factor of $\left(9 x^{2}-1\right)-(1+3 x)^{2}$.

3 An exterior angle of a triangle measures 140°. If the interior opposite angles are in the ratio $3: 1$
then find the angles of the triangle.

4 What is the x-co odinate of any point on the y-axis?

SECTION - B

Question numbers 5 to 10 carry 2 marks each.

Insert three rational numbers between $\frac{3}{5}$ and $\frac{5}{7}$.

6 For what value of k is the polynomial $\mathrm{p}(x)=2 x^{3}-\mathrm{k} x^{2}+3 x+10$ exactly divisible by $(x+2)$?

7 In figure C is the mid-point of AB and D is the midpoint of AC . Prove that

$$
\mathrm{AD}=\frac{1}{4} \mathrm{AB} . \quad \stackrel{\mathrm{A}}{\mathrm{~A}} \quad \mathrm{D} \quad \mathrm{C} \quad \mathrm{~B}
$$

8 In figure, if lines PQ and RS intersect at point T , such that $\angle \mathrm{PRT}=50^{\circ}, \angle \mathrm{TSQ}=60^{\circ}$ and

9 If a point $P(2,3)$ lies in first quadrant, then what will be the co-ordinates of a point Q opposite to it in fourth quadrant having equal distance from x-axis ?

10 The semi-perimeter of a triangle is 132 cm . The product of the difference of semi-perimeter and its respective sides is $13200 \mathrm{~cm}^{3}$. Find the area of the triangle.

SECTION - C

Question numbers 11 to 20 carry 3 marks each.

11 If $\frac{1+\sqrt{2}}{1-\sqrt{2}}+\frac{1-\sqrt{2}}{1+\sqrt{2}}=a+b \sqrt{2}$, then find a and b.

Find the value of a and b if $\frac{5+\sqrt{3}}{7-4 \sqrt{3}}=a+b \sqrt{3}$.

If $a-b=7$ and $a^{2}+b^{2}=85$, find $a^{3}-b^{3}$.

14 If $x+a$ is a factor of $x^{4}-a^{2} x^{2}+3 x-a$, then find the value of a.

15 ABCD is a square. X and Y are points on the sides AD and $B C$ such that $A Y=B X$. Prove that
$\angle X A Y=\angle Y B X$

16 In the given figure $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two triangles on the same base BC and vertices A and D are on the same side of $B C, A D$ is extended to intersect $B C$ at P. Show that :
(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\quad \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP}$

17 If a transversal intersects two parallel lines, then prove that bisectors of alternate interior angles are parallel.

18 In figure two sides AB and BC and median AM of $\triangle \mathrm{ABC}$ are respectively equal to sides DE and

DF and the median DN of $\triangle \mathrm{DEF}$. Prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.
 cm . Find the area of the parallelogram.

SECTION - D

Question numbers 21 to 31 carry 4 marks each.

21
Varun was facing some difficulty in simplyfying $\frac{1}{\sqrt{7}-\sqrt{3}}$. His classmate Priya gave him a clue to rationalise the denominator for simplification. Varun simplified the expression and thanked

Priya for this goodwill. How Varun simplified $\frac{1}{\sqrt{7}-\sqrt{3}}$? What value does it indicate ?

22

23
Simplify $\frac{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}$

25 Show by long division that $2 x+3$ is a factor of $p(x)=4 x^{4}+8 x^{3}+5 x^{2}+x-3$.

27 Show that the perimeter of a Δ is greater than the sum of its three medians.

28 Prove that the sum of three angles of a triangle is 180°. Using this result, find the value of x and all three angles of a triangle if the angles are $(2 x-7)^{\circ},(x+25)^{\circ}$ and $(3 x+12)^{\circ}$.

29 Prove that the angles opposite to equal sides of a triangle are equal.

30 In the given figure $A B$ is a line segment and p is its mid-point. D and E are points on the same
side of AB such that $\angle \mathrm{BAD}=\angle \mathrm{ABE}$ and $\angle \mathrm{EPA}=\angle \mathrm{DPB}$. Show that :
(i) $\quad \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP}$
(ii) $\mathrm{AD}=\mathrm{BE}$

31 If two lines intersect each other, then prove that the vertically opposite angles are equal.

