Tolume smifface arrea cllassis sith

Example 1: A wall in the form of a rectangle has base 15 m and height 10 m . If the cost of painting the wall is Rs. 16 per square metre, find the cost for painting the entire wall.
Solution: Let $b=15$ and $h=10$.
Then the area of the rectangle $=b \times h=15 \times 10$

$$
=150 \text { sq. metres. }
$$

Since the cost of painting 1sq. metre is Rs. 16 , the cost for painting the entire wall $=16 \times 150=$ Rs. 2400 .

Figure 2.12

Example 2: The dimensions of a rectangular metal sheet are $4 \mathrm{~m} \times 3 \mathrm{~m}$. The sheet is to be cut into square sheets each of side 4 cm . Find the number of square sheets.
Solution: Area of the metal sheet $=400 \times 300=12,0000 \mathrm{~cm}^{2}$.
Area of a square sheet $=4 \times 4=16 \mathrm{~cm}^{2}$.
\therefore No. of square sheets $=\frac{12,0000}{16}=7500$.

Figure 2.13

Example 3: Find the base of a parallelogram if its area is $40 \mathrm{~cm}^{2}$ and altitude is 15 cm .
Solution: Area $=b \times h . \therefore 40=b \times 15$.

$$
\begin{array}{ll}
\therefore & b=\frac{40}{15}=\frac{8}{3} . \\
\therefore & \text { Base }=\frac{8}{3} \mathrm{~cm} .
\end{array}
$$

Figure 2.14

Example 4: If the lengths of the sides of a triangle are $11 \mathrm{~cm}, 60 \mathrm{~cm}$ and 61 cm , find the area and perimeter of the triangle.
Solution: Area $=\sqrt{s(s-a)(s-b)(s-c)}$.
Here $2 s=a+b+c=11+60+61=132$.
$\therefore s=66, s-a=66-11=55$,
$s-b=66-60=6, s-c=66-61=5$.
\therefore Area $=\sqrt{66 \times 55 \times 6 \times 5}=330$ sq. cm .
Perimeter $=a+b+c=11+60+61=132 \mathrm{~cm}$.

Figure 2.15

Example 5: Find the area of the quadrilateral $A B C D$ given in Figure 2.16.
Solution: Area $=\frac{1}{2} d\left(h_{1}+h_{2}\right)=\frac{1}{2} \times 50 \times(10+20)$

$$
\begin{aligned}
& =25 \times 30 \\
& =750 \mathrm{~m}^{2}
\end{aligned}
$$

Figure 2.16

The perimeter of a rhombus is 20 cm . One of the diagonals is of length 8 cm . Find the length of the other diagonal and the area of the rhombus.
Solution: Let d_{1} and d_{2} be the lengths of the diagonals. Then perimeter $=2 \sqrt{d_{1}^{2}+d_{2}{ }^{2}}$. But the perimeter is $20 \mathrm{~cm} . \therefore 2 \sqrt{d_{1}^{2}+d_{2}{ }^{2}}=20 \mathrm{~cm}$ or $d_{1}^{2}+d_{2}^{2}=100$. Here one of the diagonals is of length 8 cm . Take $d_{1}=8$. Then $64+d_{2}{ }^{2}=100$ or $d_{2}{ }^{2}=36 . \therefore d_{2}=6 \mathrm{~cm}$. The area of the

Figure 2.19 rhombus is $\frac{1}{2} d_{1} \times d_{2}=\frac{1}{2} \times 8 \times 6=24 \mathrm{~cm}^{2}$.

A wire of length 264 cm is cut into two equal portions. One portion is bent in the form of a circle and the other in the form of an equilateral triangle. Find the ratio of the areas enclosed by them.(use $\pi \approx \frac{22}{7}$)
Solution: Perimeter of the circle $=\frac{264}{2}=132 \mathrm{~cm}$.
But perimeter of the circle $=2 \pi r$.
$\therefore 2 \times \frac{22}{7} \times r=132$ or $r=21 \mathrm{~cm}$.
\therefore Area of the circle $=\pi r^{2}=\frac{22}{7} \times 21 \times 21=1386 \mathrm{~cm}^{2}$.

Perimeter of the equilateral triangle $=3 a$

Figure 2.20

But perimeter $=132 \mathrm{~cm} . \therefore 3 a=132$ or $a=44 \mathrm{~cm}$.
\therefore Area of the equilateral triangle $=\frac{\sqrt{3}}{4} \times a^{2}$

$$
=\frac{\sqrt{3}}{4} \times 44^{2}=484 \sqrt{3} \mathrm{~cm}^{2}
$$

\therefore The ratio of the area of circle to that of the equilateral triangle

$$
=1386: 484 \sqrt{3}=21 \sqrt{3}: 22
$$

Figure 2.21

Find the area of the shaded portion

Solution: The area of the shaded portion is equal to
the area of the semicircle of radius 14 cm minus the area of the semicircle of radius 7 cm .
That is, $\frac{1}{2} \times \pi \times(14)^{2}-\frac{1}{2} \times \pi \times(7)^{2}$
or $\frac{1}{2} \times \frac{22}{7} \times 14 \times 14-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7=11 \times 2 \times 14-11 \times 7$

$$
=308-77=231 \mathrm{~cm}^{2} .
$$

Find the area of the design as in Figure 2.42. (Take $\pi \approx \frac{22}{7}$)

Figure 2.42
Solution: We observe that the plot is the combination of the rectangle $A B C D$, the semi-circle $C D E$ and the quadrant circles $A F D, B C G$.
The area of the rectangle $A B C D=12 \times 4=48 \mathrm{~cm}^{2}$.
The area of the semi-circle $C D E=\frac{1}{2} \pi \times 6 \times 6=\frac{22}{7} \times 3 \times 6=\frac{396}{7}=56 \frac{4}{7} \mathrm{~cm}^{2}$.
The area of the quadrant circle $A F D=\frac{1}{4} \pi \times 4 \times 4=\frac{22}{7} \times 4=\frac{88}{7}=12 \frac{4}{7} \mathrm{~cm}^{2}$.
The area of the quadrant circle $B C G=12 \frac{4}{7} \mathrm{~cm}^{2}$.
\therefore The area of the given plot $=48+56 \frac{4}{7}+12 \frac{4}{7}+12 \frac{4}{7}=128 \frac{12}{7}=129 \frac{5}{7} \mathrm{~cm}^{2}$.
A running track of 7 m wide is as shown in Figure 2.46. The inside perimeter is 720 m and the length of each straight portion is 140 m . The curved portions are in the form of semi-circles. Find the area of the track
Solution: Let r be the radius of the inner semicircles. Then the inside perimeter is
$2 \times 140+2 \times(\pi \times r)$ or $280+2 \pi r$. But this is given as 720 m .

$\therefore 280+2 \pi r=720$ or $2 \pi r=440$ or $r=70 \mathrm{~m}$ So the radius of the
inner semicircle $r=70 \mathrm{~m}$. \therefore The radius of the outer semicircle $R=70+7=77 \mathrm{~m}$.
the area of one semi-circular track

$$
=\frac{1}{2} \pi\left(R^{2}-r^{2}\right)=\frac{1}{2} \times \frac{22}{7}\left(77^{2}-70^{2}\right)=\frac{11}{7} \times 147 \times 7=1617 \mathrm{sq} . \mathrm{m}
$$

The area of one rectangular track $=140 \times 7=980$ sq. m .
\therefore Area of the track $=2 \times 1617+2 \times 980=3234+1960=5194$ sq.m.

