1. A can do piece of work in 30 days while B alone can do it in 40 days. In how many days can A and B working together do it? [Ans: $17 \frac{1}{7}$]

A'S 1 day work $=\frac{1}{30}$
B'S 1 day work $=\frac{1}{40}$
$(A+B)^{\prime}$ 'S 1 day work $=\frac{1}{30}+\frac{1}{40}=\frac{4+3}{120}=\frac{7}{120}$
$(A+B)$ working together can finish work in $\frac{120}{7}=$ $17 \frac{1}{7}$ days
2. A and B together can complete a piece of work in 35 days while A alone can complete the same work in 60 days. How many days B alone complete the same work . [Ans 84 days\}
$(A+B)^{\prime}$ ' 1 day work $=\frac{1}{35}$
(A)'S 1 day work $=\frac{1}{60}$
(B)'S 1 day work $=\frac{1}{35}-\frac{1}{60}=\frac{12-7}{420}=\frac{5}{420}=\frac{1}{84}$

So, B alone complete the same work in 84 days
3. A can do a piece of work in 7 days of 9 hours each and B can do it in 6 days of 7 hours each. How long will they take to do it, working together
$8 \frac{2}{5}$ hours a day? [Ans 3 days]
Ans: A can complete the work in (7×9) hrs $=63$ hrs. B can complete the work in (6×7) hrs $=42$ hrs.

As 1 hours work $=\frac{1}{63}$ and
$B^{\prime} s 1$ hours work $=\frac{1}{42}$
$(A+B) s 1$ hours work $=\frac{1}{63}+\frac{1}{42}=\frac{2+3}{126}=\frac{5}{126}$ Both will finish the work in $\frac{126}{5}$ hrs

They working together $8 \frac{2}{5}=\frac{42}{5}$ hrs each days
Number of days $=\frac{126}{5} \times \frac{42}{5}=\frac{126}{5} \times \frac{5}{42}=3$ days.
4. A can do a piece of work in 15 days and B alone can do it in 10 days. B works at it for 5 days and then leaves. In how many days A alone can finish the remaining work. \{ans: $7 \frac{1}{2}$ days $\}$

Ans: B's 5 day's work $=5 x \frac{1}{10}=\frac{1}{2}$
Remaining work $=1-\frac{1}{2}=\frac{1}{2}$
A can finish work the remaining work

$$
=15 \times \frac{1}{2}=7 \frac{1}{2} \text { days }
$$

5. A can do $\frac{1}{3}$ of the work in 5 days and B can do
$\frac{2}{5}$ of the work in 10 days. lin how many days both A and B together can do the wrok [Ans. $9 \frac{3}{8}$]

Solution: A can do $\frac{1}{3}$ of the work in 5 days
A can do 1 the work in $5 \div \frac{1}{3}=15$ days
B's 1 day work $=\frac{1}{15}$
A can do $\frac{2}{5}$ of the work in 10 days
B can do 1 the work in $10 \div \frac{2}{5}=25$ days
B's 1 day work $=\frac{1}{25}$
$(A+B)$'s 1 day work $=\frac{1}{15}+\frac{1}{25}=\frac{5+3}{75}=\frac{8}{75}$

So, both working together finish work in $\frac{75}{8}=$ $9 \frac{3}{8}$ days
6. A can do a piece of work in 80 days. He works at it for 10 days and then B alone finished the remaining work in 42 days. In how many days they together could complete the work \{ans 30 days $\}$

Ans: Work done by A in 10 days $=\frac{1}{80} \times 10=\frac{1}{8}$
Remaining work $=\left(1-\frac{1}{8}=\frac{7}{8}\right.$
Now, $\frac{7}{8}$ work is done by B in 42 days
Whole(1)work will be done by B in $42 \times \frac{8}{7}$

$$
=48 \text { days. }
$$

A's 1 days work $=\frac{1}{80}$ and B^{\prime} 's 1 days work $=\frac{1}{48}$
$(A+B)^{\prime}$'s 1 days work $=\frac{1}{80}+\frac{1}{48}=\frac{8}{240}=\frac{1}{30}$ so, both will finish the work in 30 days.
7. A and B can together finish a work in 30 days. They worked at it for 20 days and then B left. The remaining work was done by A alone in 20 more days. In how many days A alone can finish the work.\{Ans : 60 days $\}$

Ans: $(A+B)$'s 1 days work $=\frac{1}{30} \times 20=\frac{2}{3}$
Remaining work $=1-\frac{2}{3}=\frac{1}{3}$
The remaining work was done by A alone in 20 days

So, $\frac{1}{3}$ work was done by A alone in 20 days

Whole work was done by A alone in $20 \div \frac{1}{3}=60$ days
8. A and B can do a piece of work in 45 days and 40 days respectively. They began to go the work together but A leaves after some days and than B completed the remaining work in 23 days. Find the number of days after which A left the work [ans: 9]
$(A+B)$'s 1 day's work $=\frac{1}{45}+\frac{1}{40}=\frac{17}{360}$
B's 1 day work $=\frac{1}{40}$
Work done by B in 23 days $=\frac{1}{40} \times 23=\frac{23}{40}$
Remaining work $=1-23 / 40=\frac{17}{40}$
Now, $\frac{17}{360}$ work was done by $(A+B)$ in 1 day.
Whole work done by $(\mathrm{A}+\mathrm{B})$ in $\frac{360}{17}$ days Then, $\frac{17}{40}$ work was done by $(A+B)$ in $\frac{360}{17} \times \frac{17}{40}=$ 9 days

Therefore, A left after 9 days.
9. A does half as much work as B in three fourth of the time. If together they take 18 days to complete the work, how much time shall B take to do it? [ans 30 days]

Let's B takes x days to finish 1 work, then
So, B's I day work $=1 / x$
then, A will take $\frac{3 x}{4}$ days to finish $1 / 2$ work.
So, A'ss I day work $=\frac{1}{2} \div \frac{3 x}{4}=\frac{2}{3 x}$
Both A and B 1 day work $=\frac{1}{18}$

Both (A and B)'s 1 day work $=\frac{1}{x}+\frac{2}{3 x}=\frac{5}{3 x}=\frac{1}{18}=>$ $x=\frac{5 \times 18}{3}=30$ days
10. A can do a certain job in 12 days. B is 60% more efficient than A. How many days B alone finish the same work [Ans 7 ½]

Ans: A's 1 day work $=\frac{1}{12}$
B's 1 day work $=\frac{1}{12}+60 \%$ of $\frac{1}{12}=\frac{1}{12}+\frac{60}{100} \times \frac{1}{12}$ $=\frac{1}{12}+\frac{1}{20}=\frac{5+3}{60}=\frac{8}{60}=\frac{2}{15}$

B alone finish the same work in $\frac{15}{2}=7 \frac{1}{2}$ days 11. A can do a certain job in 25 days which B alone can do in 20 days. A stared the work and was joined by B after 10 days. How many days taken in completing the work [ans $16 \frac{2}{3}$]

Ans: A's 10 days work $=\frac{1}{25} \times 10=\frac{2}{5}$
Remaining work $=1-\frac{2}{5}=\frac{3}{5}$
$(A+B)$'s 1 days work $=\frac{1}{25}+\frac{1}{20}=\frac{4+5}{100}=\frac{9}{100}$
Whole work done by $(\mathrm{A}+\mathrm{B})$'s in $\frac{100}{9}$ days
$\frac{3}{5}$ work done by $(A+B)$'s in $\frac{100}{9} \times \frac{3}{5}=\frac{20}{3}$

$$
=6 \frac{2}{3} \text { days }
$$

Total time $=10+6 \frac{2}{3}=16 \frac{2}{3}$ days
12. A is twice as good at work as B and together they finish a piece of work in 14 days. In how many days A alone to finish the work. [Ans: 21 days]

Then, A's 1 day work $=\frac{2}{x}$
$(A+B)$'s 1 days work $=\frac{1}{x}+\frac{2}{x}=\frac{3}{x}$
$\mathrm{A} / \mathrm{q}(\mathrm{A}+\mathrm{B})$'s 1 days work $=\frac{1}{14}=\frac{3}{x}=>x=42$
So, A alone finish work in $x / 2$ days $=42 / 2=21$
days
13. A is thrice as good a work man as B and takes 10 days less to do a piece of work than B takes. How many days B alone can do the whole work: [ans 15 days]

Ans: : Let B complete work in x days
Then A completes same work in $\mathrm{x}-10$ days
A's 1 day work $=\frac{1}{x-10}$
B's 1 day work $=\frac{1}{x}$
$\mathrm{A} / \mathrm{Q} 3 \times \frac{1}{x}=\frac{1}{x-10}=>3 x-30=x=>2 x=30$

$$
x=15 \text { says }
$$

Hence, B complete work in 15 says
14. A can do a piece work in 14 days which B can do in 21 days. They begin together but 3 days before the completion of the work, A leaves off. Find the total number of days taken to finish work.[ans10 1/5]
$B^{\prime} 3$ days work $=\frac{1}{21} \times 3=\frac{1}{7}$
Remaining work $=1-\frac{1}{7}=\frac{6}{7}$
$(A+B)$'s 1 days work $=1\left(\frac{1}{14}+\frac{1}{21}\right)=\left(\frac{3+2}{42}\right)=\frac{5}{42}$
$(A+B)$ completes whole work in $\frac{42}{5}$ days

Ans: Let B's 1 day work $=\frac{1}{x}$

Then, $(A+B)$ completes $\frac{6}{7}$ work in $\frac{42}{5} x \frac{6}{7}=$ $\frac{36}{5}$ days

Total time taken $=3+\frac{36}{5}$ days $=\frac{51}{5}$ days $=$
$10 \frac{1}{5}$ days
15. If Ramesh, suresh and harish can do a piece of work in 15 days, 10 days and 6 days resp. How long will they take to do it, if all the three work it together? [ans 3 days\}
(Ramesh, suresh and harish)'s 1 days work = $\frac{1}{15}+\frac{1}{10}+\frac{1}{6}=\frac{2+3+5}{30}=\frac{1}{3}$

All the three work it together in 3 days
16. A and B can do a piece of working 72 days: B and C and do it in 120 days ; A and C can do it in 90 days. In what days can A alone do it ? [ans 120 days]
$2(A+B+C)$'s 1 day work $=\frac{1}{72}+\frac{1}{120}+\frac{1}{90}=\frac{5+3+4}{360}=$ $\frac{12}{360}=\frac{1}{30}$
$(A+B+C)$'s 1 day work $=\frac{1}{30} \times \frac{1}{2}=\frac{1}{60}$
(A)'s 1 day work $=\frac{1}{60}-\frac{1}{120}=\frac{2-1}{120}=\frac{1}{120}$

Hence A completes the work in 120 days
17. A and B and C together can finish a piece of work in 4 days, A alone can do it in 12 days and B alone can do in 18 days, In how many days C
alone can do it : [ans 9 days]
C's 1day work $=\frac{1}{4}-\left(\frac{1}{12}+\frac{1}{18}\right)=\frac{9-(3+2)}{36}=\frac{4}{36}=\frac{1}{9}$
So, C alone can do it in 9 days
18. A, B, and C can do a piece of work in 10 days. A and B can do it in 12 days, A and C in 20 days. How many days would it take each to do the work alone?

Solution : $(A+B+C)$'s 1 days work $=1 / 10$
$(A+B)$'s 1 days work $=1 / 12$
$(A+C)$'s 1 days work $=1 / 20$
C's 1 days work=1/10-1/12= $1 / 60$
B's 1 days work $=1 / 10-1 / 20=1 / 20$
A 1 day work will be $=\frac{1}{10}-\frac{1}{60}-\frac{1}{20}=\frac{2}{60}=\frac{1}{30}$
A can complete in $30, \mathrm{~B}$ can complete 20 days and C can complete 60 days
19. A, B and C are employed to do a piece of work for Rs.529. A and B together are supposed to do $\frac{19}{23}$ of the work and Band C together $\frac{8}{23}$ of the work. What amount should A be paid?

Ans: Work done by A $=\left(1-\frac{8}{23}\right) \frac{15}{23}$
$A:(B+C)=\left(\frac{15}{23}: \frac{8}{23}\right)=15: 8$
So, A's share $=$ Rs. $\left(\frac{15}{23} \times 529\right)=$ Rs. 345 .
20. Pipe A can fill a cistern in 6 hours and pipe B can fill it in 8 hours. Both the pipes are opened and after two hours, pipe A is closed. How much time will B take to fill the remaining part of the tank?
Solution Work done by $(A+B)$ in 1 hour $=\left(\frac{1}{6}+\right.$ $\frac{1}{8}$) $=\frac{7}{24}$
Work done by both in 2 hours $=\left(\frac{7}{24} \times 2\right)=\frac{7}{12}$
Remaining part $=\left(1-\frac{7}{12}\right)=\frac{5}{12}$
Now B fill full tank in 8 hrs
So, B fill part $\frac{5}{12}$ part in $8 x \frac{5}{12}=\frac{10}{3} h r s=$ 3 hrs 20 min

