1. Prove that any two adjacent angles of a parallelogram are supplementary.

Solution:

Let ABCD be a parallelogram

Then, AD || BC and AB is a transversal.

Therefore, $A + B = 180^{\circ}$ [Since, sum of the interior angles on the same side of the transversal is 180°]

Similarly, $\angle B + \angle C = 180^\circ$, $\angle C + \angle D = 180^\circ$ and $\angle D + \angle A = 180^\circ$.

Thus, the sum of any two adjacent angles of a parallelogram is 180°.

Hence, any two adjacent angles of a parallelogram are supplementary.

2. Two adjacent angles of a parallelogram are as 2 : 3. Find the measure of each of its angles.

Solution:

Let ABCD be a given parallelogram

Then, $\angle A$ and $\angle B$ are its adjacent angles.

Let $\angle A = (2x)^{\circ}$ and $\angle B = (3x)^{\circ}$.

Then, $\angle A + \angle B = 180^{\circ}$ [Since, sum of adjacent angles of a ||gm is 180°]

 $\Rightarrow 2x + 3x = 180$

 $\Rightarrow 5x = 180$

 \Rightarrow x = 36.

Therefore, $\angle A = (2 \times 36)^\circ = 72^\circ$ and $\angle B = (3 \times 36^\circ) = 108^\circ$.

Also, $\angle B + \angle C = 180^{\circ}$ [Since, $\angle B$ and $\angle C$ are adjacent angles]

 $= 108^{\circ} + \angle C = 180^{\circ}$ [Since, $\angle B = 108^{\circ}$]

 $\angle C = (180^{\circ} - 108^{\circ}) = 72^{\circ}.$

Also, $\angle C + \angle D = 180^{\circ}$ [Since, $\angle C$ and $\angle D$ are adjacent angles]

 $\Rightarrow 72^{\circ} + \angle D = 180^{\circ}$

 $\Rightarrow \angle D = (180^{\circ} - 72^{\circ}) \ 108^{\circ}.$

Therefore, $\angle A = 72^\circ$, $\angle B = 108^\circ$, $\angle C = 72^\circ$ and $\angle D = 108^\circ$. 3. In the adjoining figure, ABCD is a parallelogram in which $\angle A = 75^\circ$. Find the measure of each of the angles $\angle B$, $\angle C$ and $\angle D$.

Solution:

It is given that ABCD is a parallelogram in which $\angle A = 75^{\circ}$.

Since the sum of any two adjacent angles of a parallelogram is 180°,

 $\angle A + \angle B = 180^{\circ}$

 $\Rightarrow 75^{\circ} + \angle B = 180^{\circ}$

 $\Rightarrow \angle B = (180^\circ - 75^\circ) = 105^\circ$

Also, $\angle B + \angle C = 180^{\circ}$ [Since, $\angle B$ and $\angle C$ are adjacent angles]

 $\Rightarrow 105^{\circ} + \angle C = 180^{\circ}$

$$\Rightarrow \angle C = (180^{\circ} - 105^{\circ}) = 75^{\circ}.$$

Further, $\angle C + \angle D = 180^{\circ}$ [Since, $\angle C$ and $\angle D$ are adjacent angles]

$$\Rightarrow 75^{\circ} + \angle D = 180^{\circ}$$

 $\Rightarrow \angle \mathbf{D} = (180^\circ - 75^\circ) = 105^\circ.$

Therefore, $\angle B = 105^\circ$, $\angle C = 75^\circ$ and $\angle D = 105^\circ$. 4. In the adjoining figure, ABCD is a parallelogram in which $\angle BAD = 75^\circ$ and $\angle DBC = 60^\circ$. Calculate: (i) $\angle CDB$ and (ii) $\angle ADB$.

Solution:

We know that the opposite angles of a parallelogram are equal.

Therefore, $\angle BCD = \angle BAD = 75^{\circ}$.

(i) Now, in Δ BCD, we have

D

75°

C

60°

 $\angle CDB + \angle DBC + \angle BCD = 180^{\circ}$ [Since, sum of the angles of a triangle is 180°]

 $\Rightarrow \angle CDB + 60^{\circ} + 75^{\circ} = 180^{\circ}$

 $\Rightarrow \angle CDB + 135^\circ = 180^\circ$

 $\Rightarrow \angle \text{CDB} = (180^\circ - 135^\circ) = 45^\circ.$

(ii) AD || BC and BD is the transversal.

Therefore, $\angle ADB = \angle DBC = 60^{\circ}$ [alternate interior angles]

Hence, $\angle ADB = 60^{\circ}$.

5. In the adjoining figure, ABCD is a parallelogram in which $\angle CAD = 40^{\circ}$, $\angle BAC = 35^{\circ}$ and $\angle COD = 65^{\circ}$. Calculate: (i) $\angle ABD$ (ii) $\angle BDC$ (iii) $\angle ACB$ (iv) $\angle CBD$.

Solution:

(i) $\angle AOB = \angle COD = 65^{\circ}$ (vertically opposite angles)

Now, in $\triangle OAB$, we have:

 $\angle OAB + \angle ABO + \angle AOB = 180^{\circ}$ [Since, sum of the angles of a triangle is 180°]

$$\Rightarrow 35^{\circ} + \angle ABO + 65^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ABO + 100^{\circ} = 180^{\circ}$$

 $\Rightarrow \angle ABO = (180^{\circ} - 100^{\circ}) = 80^{\circ}$

 $\Rightarrow \angle ABD = \angle ABO = 80^{\circ}.$

(ii) AB || DC and BD is a transversal.

Therefore, $\angle BDC = \angle ABD = 80^{\circ}$ [alternate interior angles]

Hence, $\angle BDC = 80^{\circ}$.

(iii) AD || BC and AC is a transversal.

Therefore, $\angle ACB = \angle CAD = 40^{\circ}$ [alternate interior angles]

Hence, $\angle ACB = 40^{\circ}$.

(iv) $\angle BCD = \angle BAD = (35^{\circ} + 40^{\circ}) = 75^{\circ}$ [opposite angles of a parallelogram]

Now, in \triangle CBD, we have

 $\angle BDC + \angle BCD + \angle CBD = 180^{\circ}$ [sum of the angles of a triangle is 180°]

 $\Rightarrow 80^{\circ} + 75^{\circ} + \angle CBD = 180^{\circ}$

 $\Rightarrow 155^{\circ} + \angle CBD = 180^{\circ}$

 $\Rightarrow \angle CBD = (180^{\circ} - 155^{\circ}) = 25^{\circ}.$

Hence, $\angle CBD = 25^{\circ}$.

6. In the adjoining figure, ABCD is a parallelogram, AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively. Prove that $\angle AOB = 90^{\circ}$.

Solution:

We know that the sum of two adjacent angles of a parallelogram is 180°

Therefore, $\angle A + \angle B = 180^{\circ}$ (i)

Since AO and BO are the bisectors of $\angle A$ and $\angle B$, respectively, we have

$$\angle OAB = 1/2 \angle A$$
 and $\angle ABO = 1/2 \angle B$.

From $\triangle OAB$, we have

 $\angle OAB + \angle AOB + \angle ABO = 180^{\circ}$ [Since, sum of the angles of a triangle is 180°]

$$\Rightarrow$$
 ¹/₂ $\angle A + \angle ABO + ^{1}/_{2} \angle B = 180^{\circ}$

$$\Rightarrow \frac{1}{2}(\angle A + \angle B) + \angle AOB = 180^{\circ}$$

 $\Rightarrow (^{1}/_{2} \times 180^{\circ}) + \angle AOB = 180^{\circ} \text{ [using (i)]}$

$$\Rightarrow 90^{\circ} + \angle AOB = 180^{\circ}$$

 $\Rightarrow \angle AOB = (180^{\circ} - 90^{\circ}) = 90^{\circ}.$

Hence, $\angle AOB = 90^{\circ}$.

7. The ratio of two sides of a parallelogram is 4 : 3. If its perimeter is 56 cm, find the lengths of its sides. **Solution:**

Let the lengths of two sides of the parallelogram be 4x cm and 3x cm respectively.

Then, its perimeter = 2(4x + 3x) cm = 8x + 6x = 14x cm.

Therefore, $14x = 56 \Leftrightarrow x = \frac{56}{14} = 4$.

Therefore, one side = (4×4) cm = 16 cm and other side = (3×4) cm = 12 cm. 8. The length of a rectangle is 8 cm and each of its diagonals measures 10 cm. Find its breadth. Solution:

Let ABCD be the given rectangle in which length AB = 8 cm and diagonal AC = 10 cm.

Since each angle of a rectangle is a right angle, we have

$$\angle ABC = 90^{\circ}.$$

From right $\triangle ABC$, we have

 $AB^{2} + BC^{2} = AC^{2}$ [Pythagoras' Theorem]

$$\Rightarrow BC^{2} = (AC^{2} - AB^{2}) = \{(10)^{2} - (8)^{2}\} = (100 - 64) = 36$$

$$\Rightarrow$$
 BC = $\sqrt{36}$ = 6cm.

Hence, breadth = 6 cm.

9. In the adjacent figure, ABCD is a rhombus whose diagonals AC and BD intersect at a point O. If side AB = 10cm and diagonal BD = 16 cm, find the length of diagonal AC.

Solution:

We know that the diagonals of a rhombus bisect each other at right angles

Therefore, BO = ${}^{1}/{}_{2}BD = ({}^{1}/{}_{2} \times 16)$ cm = 8 cm, AB = 10 cm and $\angle AOB = 90^{\circ}$.

From right $\triangle OAB$, we have

 $AB^2 = AO^2 + BO^2$

Www.jsuniltutorial.weebly.com/

 $\Rightarrow AO = \sqrt{36} \text{ cm} = 6 \text{ cm}.$

Therefore, $AC = 2 \times AO = (2 \times 6) \text{ cm} = 12 \text{ cm}.$

10. Prove that the diagonals of a rectangle are equal and bisect each other.

Let ABCD be a rectangle whose diagonals AC and BD intersect at the point 0.

From \triangle ABC and \triangle BAD,

AB = BA (common)

 $\angle ABC = \angle BAD$ (each equal to 900)

BC = AD (opposite sides of a rectangle).

Therefore, \triangle ABC \cong \triangle BAD (by SAS congruence)

 \Rightarrow AC = BD.

Hence, the diagonals of a rectangle are equal.

From \triangle OAB and \triangle OCD,

 $\angle OAB = \angle OCD$ (alternate angles)

 $\angle OBA = \angle ODC$ (alternate angles)

AB = CD (opposite sides of a rectangle)

Therefore, $\triangle OAB \cong \triangle OCD$. (by ASA congruence)

 \Rightarrow OA = OC and OB = OD.

This shows that the diagonals of a rectangle bisect each other.

Hence, the diagonals of a rectangle are equal and bisect each other.

11. Prove that the diagonals of a rhombus bisect each other at right angles.

Let ABCD be a rhombus whose diagonals AC and BD intersect at the point O.

We know that the diagonals of a parallelogram bisect each other.

Also, we know that every rhombus is a parallelogram.

So, the diagonals of a rhombus bisect each other.

Therefore, OA = OC and OB = OD

From Δ COB and Δ COD,

CB = CD (sides of a rhombus)

CO = CO (common).

OB = OD (proved)

Therefore, $\triangle \text{ COB} \cong \triangle \text{ COD}$ (by SSS congruence)

 $\Rightarrow \angle COB = \angle COD$

But, $\angle COB + \angle COD = 2$ right angles (linear pair)

Therefore, $\angle COB = \angle COD = 1$ right angle.

Hence, the diagonals of a rhombus bisect each other at right angles.

