8th Quadrilateral and Parallelogram Solved Extra Edugain Questions

1. Prove that any two adjacent angles of a parallelogram are supplementary.

Solution:

Let ABCD be a parallelogram
Then, $\mathrm{AD} \| \mathrm{BC}$ and AB is a transversal.

Therefore, $\mathrm{A}+\mathrm{B}=180^{\circ}$ [Since, sum of the interior angles on the same side of the transversal is 180°]

Similarly, $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}, \angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$ and $\angle \mathrm{D}+\angle \mathrm{A}=180^{\circ}$.
Thus, the sum of any two adjacent angles of a parallelogram is 180°.

Hence, any two adjacent angles of a parallelogram are supplementary.
2. Two adjacent angles of a parallelogram are as $2: 3$. Find the measure of each of its angles.

Solution:

Let $A B C D$ be a given parallelogram
Then, $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are its adjacent angles.

Let $\angle \mathrm{A}=(2 \mathrm{x})^{\circ}$ and $\angle \mathrm{B}=(3 \mathrm{x})^{\circ}$.

Then, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ [Since, sum of adjacent angles of a $\| \mathrm{gm}$ is 180°]
$\Rightarrow 2 \mathrm{x}+3 \mathrm{x}=180$
$\Rightarrow 5 \mathrm{x}=180$
$\Rightarrow \mathrm{x}=36$.

Therefore, $\angle \mathrm{A}=(2 \times 36)^{\circ}=72^{\circ}$ and $\angle \mathrm{B}=\left(3 \times 36^{\circ}\right)=108^{\circ}$.

Also, $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Since, $\angle \mathrm{B}$ and $\angle \mathrm{C}$ are adjacent angles]
$=108^{\circ}+\angle \mathrm{C}=180^{\circ}\left[\right.$ Since, $\left.\angle \mathrm{B}=108^{\circ}\right]$
$\angle \mathrm{C}=\left(180^{\circ}-108^{\circ}\right)=72^{\circ}$.

Also, $\angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$ [Since, $\angle \mathrm{C}$ and $\angle \mathrm{D}$ are adjacent angles]
$\Rightarrow 72^{\circ}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow \angle \mathrm{D}=\left(180^{\circ}-72^{\circ}\right) 108^{\circ}$.
Therefore, $\angle \mathrm{A}=72^{\circ}, \angle \mathrm{B}=108^{\circ}, \angle \mathrm{C}=72^{\circ}$ and $\angle \mathrm{D}=108^{\circ}$.
3. In the adjoining figure, ABCD is a parallelogram in which $\angle \mathrm{A}=75^{\circ}$. Find the measure of each of the angles $\angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$.

Solution:

It is given that ABCD is a parallelogram in which $\angle \mathrm{A}=75^{\circ}$.
Since the sum of any two adjacent angles of a parallelogram is 180°,
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
$\Rightarrow 75^{\circ}+\angle \mathrm{B}=180^{\circ}$
$\Rightarrow \angle \mathrm{B}=\left(180^{\circ}-75^{\circ}\right)=105^{\circ}$

Also, $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ [Since, $\angle \mathrm{B}$ and $\angle \mathrm{C}$ are adjacent angles]
$\Rightarrow 105^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=\left(180^{\circ}-105^{\circ}\right)=75^{\circ}$.
Further, $\angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$ [Since, $\angle \mathrm{C}$ and $\angle \mathrm{D}$ are adjacent angles]

$\Rightarrow 75^{\circ}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow \angle \mathrm{D}=\left(180^{\circ}-75^{\circ}\right)=105^{\circ}$.
Therefore, $\angle \mathrm{B}=105^{\circ}, \angle \mathrm{C}=75^{\circ}$ and $\angle \mathrm{D}=105^{\circ}$.
4. In the adjoining figure, ABCD is a parallelogram in which $\angle \mathrm{BAD}=75^{\circ}$ and $\angle \mathrm{DBC}=60^{\circ}$. Calculate:
(i) $\angle \mathrm{CDB}$ and (ii) $\angle \mathrm{ADB}$.

Solution:

We know that the opposite angles of a parallelogram are equal.

Therefore, $\angle \mathrm{BCD}=\angle \mathrm{BAD}=75^{\circ}$.
(i) Now, in $\triangle B C D$, we have
$\angle \mathrm{CDB}+\angle \mathrm{DBC}+\angle \mathrm{BCD}=180^{\circ}$ [Since, sum of the angles of a triangle is 180°]
$\Rightarrow \angle \mathrm{CDB}+60^{\circ}+75^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{CDB}+135^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{CDB}=\left(180^{\circ}-135^{\circ}\right)=45^{\circ}$.
(ii) $\mathrm{AD} \| \mathrm{BC}$ and BD is the transversal.

Therefore, $\angle \mathrm{ADB}=\angle \mathrm{DBC}=60^{\circ}$ [alternate interior angles]
Hence, $\angle \mathrm{ADB}=60^{\circ}$.
5. In the adjoining figure, ABCD is a parallelogram in which $\angle \mathrm{CAD}=40^{\circ}, \angle \mathrm{BAC}=35^{\circ}$ and $\angle \mathrm{COD}=$ 65°. Calculate: (i) $\angle \mathrm{ABD}$ (ii) $\angle \mathrm{BDC}$ (iii) $\angle \mathrm{ACB}$ (iv) $\angle \mathrm{CBD}$.

Solution:

(i) $\angle \mathrm{AOB}=\angle \mathrm{COD}=65^{\circ}$ (vertically opposite angles)

Now, in $\triangle \mathrm{OAB}$, we have:
$\angle \mathrm{OAB}+\angle \mathrm{ABO}+\angle \mathrm{AOB}=180^{\circ}$ [Since, sum of the angles of a triangle is 180°]
$\Rightarrow 35^{\circ}+\angle \mathrm{ABO}+65^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABO}+100^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABO}=\left(180^{\circ}-100^{\circ}\right)=80^{\circ}$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ABO}=80^{\circ}$.
(ii) $\mathrm{AB} \| \mathrm{DC}$ and BD is a transversal.

Therefore, $\angle \mathrm{BDC}=\angle \mathrm{ABD}=80^{\circ}$ [alternate interior
 angles]

Hence, $\angle \mathrm{BDC}=80^{\circ}$.
(iii) $\mathrm{AD} \| \mathrm{BC}$ and AC is a transversal.

8th Quadrilateral and Parallelogram Solved Extra Edugain Questions

Therefore, $\angle \mathrm{ACB}=\angle \mathrm{CAD}=40^{\circ}$ [alternate interior angles]

Hence, $\angle \mathrm{ACB}=40^{\circ}$.
(iv) $\angle \mathrm{BCD}=\angle \mathrm{BAD}=\left(35^{\circ}+40^{\circ}\right)=75^{\circ}$ [opposite angles of a parallelogram]

Now, in $\triangle C B D$, we have
$\angle \mathrm{BDC}+\angle \mathrm{BCD}+\angle \mathrm{CBD}=180^{\circ}$ [sum of the angles of a triangle is 180°]
$\Rightarrow 80^{\circ}+75^{\circ}+\angle \mathrm{CBD}=180^{\circ}$
$\Rightarrow 155^{\circ}+\angle \mathrm{CBD}=180^{\circ}$
$\Rightarrow \angle \mathrm{CBD}=\left(180^{\circ}-155^{\circ}\right)=25^{\circ}$.

Hence, $\angle \mathrm{CBD}=25^{\circ}$.
6. In the adjoining figure, ABCD is a parallelogram, AO and BO are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ respectively. Prove that $\angle A O B=90^{\circ}$.

Solution:

We know that the sum of two adjacent angles of a parallelogram is 180°

Therefore, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ \qquad

Since AO and BO are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$, respectively, we have
$\angle \mathrm{OAB}=1 / 2 \angle \mathrm{~A}$ and $\angle \mathrm{ABO}=1 / 2 \angle \mathrm{~B}$.

From $\triangle \mathrm{OAB}$, we have

$$
\begin{aligned}
& \angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{ABO}=180^{\circ}[\text { Since, sum of the angles of } \\
& \text { a triangle is } \left.180^{\circ}\right] \\
& \Rightarrow \frac{1}{1} \angle \mathrm{~A}+\angle \mathrm{ABO}+\frac{1}{2} \angle \mathrm{~B}=180^{\circ} \\
& \Rightarrow{ }^{1} / 2(\angle \mathrm{~A}+\angle \mathrm{B})+\angle \mathrm{AOB}=180^{\circ} \\
& \Rightarrow\left(\frac{1}{2} \times 180^{\circ}\right)+\angle \mathrm{AOB}=180^{\circ}[\text { using }(\mathrm{i})] \\
& \Rightarrow 90^{\circ}+\angle \mathrm{AOB}=180^{\circ}
\end{aligned}
$$

8th Quadrilateral and Parallelogram Solved Extra Edugain Questions

$\Rightarrow \angle \mathrm{AOB}=\left(180^{\circ}-90^{\circ}\right)=90^{\circ}$.

Hence, $\angle \mathrm{AOB}=90^{\circ}$.
7. The ratio of two sides of a parallelogram is $4: 3$. If its perimeter is 56 cm , find the lengths of its sides.

Solution:

Let the lengths of two sides of the parallelogram be 4 x cm and 3 x cm respectively.

Then, its perimeter $=2(4 x+3 x) c m=8 x+6 x=14 x \mathrm{~cm}$.
Therefore, $14 \mathrm{x}=56 \Leftrightarrow \mathrm{x}={ }^{56} / 14=4$.

Therefore, one side $=(4 \times 4) \mathrm{cm}=16 \mathrm{~cm}$ and other side $=(3 \times 4) \mathrm{cm}=12 \mathrm{~cm}$.
8 . The length of a rectangle is 8 cm and each of its diagonals measures 10 cm . Find its breadth.

Solution:

Let ABCD be the given rectangle in which length $\mathrm{AB}=8 \mathrm{~cm}$ and diagonal $\mathrm{AC}=10 \mathrm{~cm}$.
Since each angle of a rectangle is a right angle, we have
$\angle \mathrm{ABC}=90^{\circ}$.

From right $\triangle \mathrm{ABC}$, we have
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}[$ Pythagoras' Theorem $]$
$\Rightarrow \mathrm{BC}^{2}=\left(\mathrm{AC}^{2}-\mathrm{AB}^{2}\right)=\left\{(1 \mathrm{O})^{2}-(8)^{2}\right\}=(100-64)=36$

$\Rightarrow B C=\sqrt{36}=6 \mathrm{~cm}$.

Hence, breadth $=6 \mathrm{~cm}$.
9. In the adjacent figure, ABCD is a rhombus whose diagonals AC and BD intersect at a point O . If side $A B=10 \mathrm{~cm}$ and diagonal $B D=16 \mathrm{~cm}$, find the length of diagonal $A C$.

Solution:

We know that the diagonals of a rhombus bisect each other at right angles

Therefore, $\mathrm{BO}={ }^{1} / 2 \mathrm{BD}=(1 / 2 \times 16) \mathrm{cm}=8 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\angle \mathrm{AOB}=90^{\circ}$.

From right $\triangle \mathrm{OAB}$, we have
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$

$$
\begin{aligned}
\Rightarrow \mathrm{AO}^{2}=\left(\mathrm{AB}^{2}-\right. & \left.\mathrm{BO}^{2}\right)=\left\{(10)^{2}-(8)^{2}\right\} \mathrm{cm}^{2} \\
& =(100-64) \mathrm{cm}^{2} \\
& =36 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\Rightarrow A O=\sqrt{36} \mathrm{~cm}=6 \mathrm{~cm}
$$

Therefore, $\mathrm{AC}=2 \times \mathrm{AO}=(2 \times 6) \mathrm{cm}=12 \mathrm{~cm}$.
10. Prove that the diagonals of a rectangle are equal and bisect each other.

Let ABCD be a rectangle whose diagonals AC and BD intersect at the point 0 .
From $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$,
$\mathrm{AB}=\mathrm{BA}$ (common)
$\angle \mathrm{ABC}=\angle \mathrm{BAD}$ (each equal to 90 o)
$\mathrm{BC}=\mathrm{AD}$ (opposite sides of a rectangle).

Therefore, $\Delta \mathrm{ABC} \cong \Delta \mathrm{BAD}$ (by SAS congruence)
$\Rightarrow \mathrm{AC}=\mathrm{BD}$.

Hence, the diagonals of a rectangle are equal.
From $\triangle \mathrm{OAB}$ and $\Delta \mathrm{OCD}$,

$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (alternate angles)
$\angle \mathrm{OBA}=\angle \mathrm{ODC}$ (alternate angles)
$\mathrm{AB}=\mathrm{CD}$ (opposite sides of a rectangle)

Therefore, $\triangle \mathrm{OAB} \cong \Delta \mathrm{OCD}$. (by ASA congruence)
$\Rightarrow \mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$.
This shows that the diagonals of a rectangle bisect each other.

8th Quadrilateral and Parallelogram Solved Extra Edugain Questions

Hence, the diagonals of a rectangle are equal and bisect each other.
11. Prove that the diagonals of a rhombus bisect each other at right angles.

Let ABCD be a rhombus whose diagonals AC and BD intersect at the point O .

We know that the diagonals of a parallelogram bisect each other.

Also, we know that every rhombus is a parallelogram.

So, the diagonals of a rhombus bisect each other.

Therefore, $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$

From $\Delta \mathrm{COB}$ and $\Delta \mathrm{COD}$,
$\mathrm{CB}=\mathrm{CD}$ (sides of a rhombus)
$\mathrm{CO}=\mathrm{CO}$ (common).
$\mathrm{OB}=\mathrm{OD}($ proved $)$

Therefore, $\Delta \mathrm{COB} \cong \Delta \mathrm{COD}$ (by SSS congruence)
$\Rightarrow \angle \mathrm{COB}=\angle \mathrm{COD}$

But, $\angle \mathrm{COB}+\angle \mathrm{COD}=2$ right angles (linear pair)

Therefore, $\angle \mathrm{COB}=\angle \mathrm{COD}=1$ right angle .

Hence, the diagonals of a rhombus bisect each other at right angles.

