8th Polygons Solved Questions Paper

1.Q. Find the number of diagonals in an octagon?

Ans: Number Of Diagonals Of Polygon = n(n-3) / 2

Where n is Number Of Sides

Here n = 8

Diagonals= [8(8-3)5]/2 = 20

2.Q. Find the number of sides of a polygon whose each exterior angle is 45°.

Ans: Measure of Each Exterior Angle of a Polygon = 360/n

Each Exterior Angle = 45

45 = 360/n

Number of Sides = 360/45 = 8

So Number of Sides = 8

3. Q. The sum of the interior angles of a regular polygon is 3 times the sum of its exterior angles. Determine the number of sides of the polygon.

Ans: sum of the interior angles of a regular polygon is 3 times the sum of its exterior angles.

We know that in a regular polygon sum of all the exterior angles = 360°

Therefore, sum of interior angles = $3 \times 360^{\circ} = 1080^{\circ}$

Again, we have sum of interior angles, $S = (n - 2)180^{\circ}$, where n is the number of sides of the polygon

$$\Rightarrow$$
 (n - 2)180° = 1080°

$$\Rightarrow$$
 n - 2 = 6

$$\Rightarrow$$
 n = 8

Hence, the polygon of 8 sides is octagon.

4. Q. (a) What is the minimum interior angle possible for a regular polygon? Why?

(b) What is the maximum exterior angle possible for a regular polygon?

Answer: The polygon with minimum number of sides is a triangle, and each angle of an equilateral triangle measures 60°, so 60° is the minimum value of the possible interior angle for a regular polygon. For an equilateral triangle the exterior angle is 180°-60°=120° and this is the maximum possible value of an exterior angle for a regular polygon.

5. Q. Find the measure of each exterior angle of a regular polygon of 9 sides.

Ans: Total measure of all exterior angles = 360

No. of sides = 9

Measure of each exterior angle = 360/9 = 40

6.Q. If the sum of the measures of the interior angles of a polygon equals the sum of the measures of the exterior angles, how many sides does the polygon have?

Ans:The sum of the measures of the interior angles of a polygon with n sides = $(n-2)x180^{\circ}$ The sum of the exterior angles of any polygon= 360°

$$(n-2) \times 180^0 = 360^0 \Rightarrow n=2+2=4$$

7.Q. The sum of the interior angles of a regular polygon is: $(n - 2) \times 180^{\circ}$ where n is the number of sides of the polygon.

Solution: The sum of its exterior angles of regular polygon= 360°

The exterior angle of a regular polygon

Interior angle of a regular polygon = sum of interior angles ÷ number of sides

8. Q.What is the measure of the each angle of regular Hexagon?

Ans: No. of sides in regular hexagon = 6

The measure of the each angle = $[(2n - 4)x90^{0}/n]$ = $[2x6-4]x90^{0}/6$ = $720^{0}/6$ = 120^{0}

9. Q. Find the number of sides of a polygon whose each interior angle is 156°.

Ans each exterior angle = 180 - 1560 = 24⁰ Measure of Each Exterior Angle of a Polygon = 360/n

$$\Rightarrow$$
 24⁰ = 360/n \Rightarrow n = 360/24 = 15

10.Q. Two regular polygons are such that the ratio between their no. of sides is 1:2 and the ratio of measures of their interior angle is 3:4. Find the number of sides of each polygon.

Ans: let the number of sides are x and 2x

then their interior angles will be [{(2n-4)/n}x90⁰]

and [{(4n-4)/n}x90⁰]

A/Q, the ratio of measures of their interior angle = 3:4

 $\Rightarrow [\{(2n-4)/n\}x90^0] \div [\{(4n-4)/n\}x90^0] = \frac{3}{4}$

On solving this we get, n=5

So, the numbers of sides are 5 and 2x5=10