Parallelogram solved Worksheet/ Questions Paper

1.Q. Name each of the following parallelograms.

(i) The diagonals are equal and the adjacent sides are unequal.
(ii) The diagonals are equal and the adjacent sides are equal.
(iii) The diagonals are unequal and the adjacent sides are equal.
(iv) All the sides are equal and one angle is 60°.
(v) All the sides are equal and one angle is 90°.
(vi) All the angles are equal and the adjacent sides are unequal.
Ans: (i) rectangle
(ii) square
(iii) rhombus (iv) rhombus
(v) square (vi) rectangle

2. Q. State whether True or False.

a) All rectangles are squares

Answer: All squares are rectangles but all rectangles can't be squares, so this statement is false.
(b) All kites are rhombuses.

Answer: All rhombuses are kites but all kites can't be rhombus
(c) All rhombuses are parallelograms

Answer: True
(d) All rhombuses are kites.

Answer: True
(e) All squares are rhombuses and also rectangles

Answer: True; squares fulfill all criteria of being a rectangle because all angles are right angle and opposite sides are equal. Similarly, they fulfill all criteria of a rhombus, as all sides are equal and their diagonals bisect each other.
(f) All parallelograms are trapeziums.

Answer: False;
All trapeziums are parallelograms, but all parallelograms can't be trapezoid.
(g) All squares are not parallelograms.

Answer: False; all squares are parallelograms
(h) All squares are trapeziums. Answer: True
3. Q. In the adjacent figure, $A B C D$ is a rectangle. If $B M$ and $D N$ are perpendiculars from B and D on $A C$, prove that $\triangle \mathrm{BMC} \cong \triangle \mathrm{DNA}$. Is it true that $\mathrm{BM}=\mathrm{DN}$?

Solution:

In $\Delta \mathrm{s}$ BMC and DNA,
$\mathrm{BC}=\mathrm{DA}$ [Opposite sides]
$\angle B C M=\angle D A N$ (alternate angles)
$\angle \mathrm{DNA}=\angle \mathrm{BMC}=90^{\circ}[\mathrm{DN}$ and BM are perpendicular to AC$]$
By AAS Congruency,

$\Delta \mathrm{BMC} \cong \triangle \mathrm{DNA}$

J.siln willo ill:l
 ACBSE Coaching for OCathematics and Science

By CPCT, BM=DN
4.Q. In the adjacent figure, $A B C D$ is a parallelogram and line segments $A E$ and $C F$ bisect the angles A and C respectively. Show that $A E \| C F$.

Solution: $<A=<C$ [Opposite angles]
Given that, line segments AE and CF bisect the angles A and
C respectively
$1 / 2 \angle A=1 / 2 \angle C$,
$\Rightarrow \angle D A E=\angle B C F$ \qquad
Now, In $\triangle \mathrm{s}$ ADE and CBF,
AD = BC [Opposite sides]

$\angle \mathrm{B}=\angle \mathrm{D}$ [Opposite angles]
$\angle \mathrm{DAE}=\angle \mathrm{BCF}[$ from (i)]
Therefore, $\triangle \mathrm{ADE} \cong \triangle C B F$ [By ASA congruency]
By CPCT,DE=BF
But, $C D=A B \Rightarrow C D-D E=A B-B F$. So, $C E=A F$.
Therefore, AECF is a quadrilateral having pairs of side parallel and equal,So, AECF is a parallelogram. Hence, AE || CF.
5.Q. The lengths of the diagonals of a rhombus are 16 cm and 12 cm respectively. Find the length of each of its sides.

Solution:
Let, $A C=12 \mathrm{~cm}$ and $\mathrm{BD}=16 \mathrm{~cm}$
$B O=1 / 2 B D=8 \mathrm{~cm}$ also, $\mathrm{A} 0=1 / 2 \mathrm{AC}=6 \mathrm{~cm}$
Now, In Right $\triangle \mathrm{AOB}$,
$A B^{2}=A O^{2}+O B^{2}$
$A B^{2}=6^{2}+8^{2}=100=10^{2}$

$A B=10 \mathrm{~cm}$
The length of each of its sides $=10 \mathrm{~cm}$
6.Q. In the given figure $A B C D$ is a square. Find the measure of $\angle C A D$.

Solution: In \triangle ADC,
DA = DC
$\Rightarrow \angle A C D=\angle D A C=x^{\circ}$ (say)
Then, $\angle A C D+\angle D A C+\angle A D C=180^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}+\mathrm{x}^{\circ}+90^{\circ}=180^{\circ}$.
$\Rightarrow x=90 / 2=45^{\circ}$

JSTITL TITOTML ACBSE Coaching for OCathematics and Science

7.Q. $A B C D$ is a rhombus whose diagonals $A C$ and $B D$ intersect at a point O. If side $A B=10 \mathrm{~cm}$ and diagonal $B D=16 \mathrm{~cm}$, find the length of diagonal $A C$.

Solution: We know that the diagonals of a rhombus bisect each other at right angles
Therefore, $\mathrm{BO}=1 / 2 \mathrm{BD}=(1 / 2 \times 16) \mathrm{cm}=8 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\angle \mathrm{AOB}=$ 90°.
From right $\triangle \mathrm{OAB}$, we have
$A B^{2}=A O^{2}+B O^{2}$

$$
\begin{aligned}
\Rightarrow A O^{2}=\left(A B^{2}-\right. & \left.B O^{2}\right)=\left\{(10)^{2}-(8)^{2}\right\} \mathrm{cm}^{2} \\
= & (100-64) \mathrm{cm}^{2}=36 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\Rightarrow A O=\sqrt{ } 36 \mathrm{~cm}=6 \mathrm{~cm} .
$$

Therefore, $\mathrm{AC}=2 \times \mathrm{AO}=(2 \times 6) \mathrm{cm}=12 \mathrm{~cm}$
8. Q. One of the diagonals of a rhombus is equal to one of its sides. Find the angles of the rhombus.

Solution : In rhombus, $A B C D$,
$A B=A D=B D$
$\therefore \triangle A B D$ is an equilateral triangle.
$\therefore \angle \mathrm{DAB}=\angle 1=\angle 2=60^{\circ}$
Similarly, $\angle B C D=\angle 3=\angle 4=60^{\circ} \ldots$..(ii)

from (i) and (ii)
$\angle \mathrm{ABC}=\angle \mathrm{B}=\angle 1+\angle 3=60^{\circ}+60^{\circ}=120^{\circ}$
$\angle \mathrm{ADC}=\angle \mathrm{D}=\angle 2+\angle 4=60^{\circ}+60^{\circ}=120^{\circ}$
Hence, $\angle A=60^{\circ}, \angle B=120^{\circ}, \angle C=60^{\circ}$ and $\angle \mathrm{D}=120^{\circ}$.
9. Q . The diagonals of a rhombus $A B C D$ intersect at O . If $\angle A D C=120^{\circ}$ and
$\mathrm{OD}=6 \mathrm{~cm}$, find
(i) $\angle O A D$ (ii) side $A B$ (iii) perimeter of the rhombus $A B C D$.

Solution: Given that
$\angle A D C=120^{\circ}$
i.e., $\angle A D O+\angle O D C=120^{\circ}$

But $\angle A D O=\angle O D C(\triangle A O D \cong \triangle C O D)$
$\therefore 2 \angle A D O=120^{\circ}$
i.e. $\angle A D O=60^{\circ}$

Also, we know that the diagonals of a rhombus bisect each that at $90^{\circ} . \quad \angle \mathrm{DOA}=90^{\circ} \ldots$ (ii)
Now, in $\triangle D O A$

$$
\angle A D O+\angle D O A+\angle O A D=180^{\circ}
$$

From (i) and (ii), we have
$60^{\circ}+90^{\circ}+\angle O A D=180^{\circ}$

ACBSE Coaching for OKathematics and Science

$\Rightarrow \angle \mathrm{OAD}=30^{\circ}$
$\therefore \angle \mathrm{DAB}=60^{\circ} \quad \therefore \triangle \mathrm{DAB}$ is an equilateral triangle
(ii) Now $\mathrm{OD}=6 \mathrm{~cm}$
$\Rightarrow O D+O B=B D=6 \mathrm{~cm}+6 \mathrm{~cm}=B D=12 \mathrm{~cm}$ Since, $A B=B D=A D=12 \mathrm{~cm} \Rightarrow A B=12 \mathrm{~m}$.
(iii) Now Perimeter $=4 \times$ side $=(4 \times 12) \mathrm{cm}=48 \mathrm{~cm}$

Hence, the perimeter of the rhombus $=48 \mathrm{~cm}$.
10. Q. In a quadrilateral $A B C D, A C$ and $B D$ are the bisectors of $<A$ and $<B$ resp. Prove that $<A O B=1 / 2$ ($<\mathrm{C}+<\mathrm{D}$)
Given, $A O$ and $B O$ are the bisectors of angle A and angle B respectively.
$\therefore \angle 1=\angle 4$ and $\angle 3=\angle 5$
To prove: $\angle 2=\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$

Proof:

In quadrilateral $A B C D$
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\frac{1}{2}$
$\frac{1}{2}(\angle A+\angle B+\angle C+\angle D)=180^{\circ} \ldots$ (2)
Now in $\triangle A O B$
$\angle 1+\angle 2+\angle 3=180^{\circ}$
Equating (2) and (3), we get
$\angle 1+\angle 2+\angle 3=\frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2}(\angle C+\angle D)$

$\angle 1+\angle 2+\angle 3=\angle 1+\angle 3+\frac{1}{2}(\angle C+\angle D)$
$\therefore \angle 2=\frac{1}{2}[\angle C+\angle D]$ Hence proved
11. Q. $A B C D$ is a trapezium where $A B$ parallel to $C D$. measure of $\angle A=\angle B=45^{\circ}$. Prove that $A D=B C$

Solution:
Given: $A B C D$ is a trapezium with $A B \| C D$ and $\angle A=\angle B=45^{\circ}$
Construction: Draw DE II CB.
Now In quadrilateral DEBC
DE II CB and DC II EB
$\Rightarrow D E B C$ is a parallelogram
$\Rightarrow D E=B C$

Also $D E$ II $C B$ and $A B$ is the transversal
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{DEA}=45^{\circ}$ (Corresponding Angles)
Now in $\triangle A D E$
$\angle A=\angle D E A=45^{\circ}$
$\Rightarrow A D=D E$ (In a triangle sides opposite to equal angles are equal)

चSTITL TITOTM: ACBSE Coaching for O(athematics and Science

From (1) and (2) we get, $A D=B C$
12. Q. $A B C D$ is a rhombus in which the altitude from D to side $A B$ bisects $A B$. Then find value of $\angle A$ and $\leq \mathrm{B}$ respectively.

Solution: Given : $A B C D$ is a rhombus. $D E$ is the altitude on $A B$ such that $A E=E B$.
In $\triangle A E D$ and $\triangle B E D$,
$D E=D E$ (Common side)
$\angle D E A=\angle D E B\left(90^{\circ}\right)$
$\mathrm{AE}=\mathrm{EB}$ (Given)
$\therefore \triangle \mathrm{AED} \cong \triangle \mathrm{BED}$ (SAS congruence rule)
$\Rightarrow A D=B D$ (C.P.C.T.)
Also, $A D=A B$ [Sides of rhombus are equal]
$\Rightarrow A D=A B=B D$
Thus, $\triangle A B D$ is an equilateral triangle.
$\therefore \angle \mathrm{A}=60^{\circ}$
$\Rightarrow \angle \mathrm{C}=\angle \mathrm{A}=60^{\circ}$ [Opposite angles of rhombus are equal]
$\angle A B C+\angle B C D=180^{\circ}$ [Sum of adjacent angles of a rhombus is supplementary]
$\therefore \angle A B C+60^{\circ}=180^{\circ}$
$\Rightarrow \angle A B C=180^{\circ}-60^{\circ}$
$\Rightarrow \angle A B C=120^{\circ}$
$\therefore \angle A D C=\angle A B C=120^{\circ}$ [Opposite angles of a rhombus are equal]
Thus, angles of rhombus are $60^{\circ}, 120^{\circ}, 60^{\circ}$ and 120°.

13. Three angles of a quadrilateral are in the ratio $3: 4: 5$. The difference of the least and the greatest of these angles is 45 . Find all the four angles of the quadrilateral.

Ans: The ratio of the three angles of quadrilateral $=3: 4: 5$
Let the angles be $3 x, 4 x$ and $5 x$.
The greatest angle among these is $5 x$ and the least is $3 x$.
According to the question,
$5 x-3 x=45$
$\Rightarrow 2 \mathrm{x}=45$
$\Rightarrow x=45 \div 2$
$\Rightarrow \mathrm{x}=22.5$
Hence, the three angles of quadrilateral are $3 \times 22.5=67.5^{\circ}, 4 \times 22.5^{\circ}=90^{\circ}$ and $5 \times 22.5^{\circ}=112.5^{\circ}$.
Fourth angle of quadrilateral $=360^{\circ}-67.5^{\circ}+90^{\circ}+112.5^{\circ}=360^{\circ}-270^{\circ}=90^{\circ}$

