

Parallelogram solved Worksheet/ Questions Paper

1.Q. Name each of the following parallelograms.

- (i) The diagonals are equal and the adjacent sides are unequal.
- (ii) The diagonals are equal and the adjacent sides are equal.
- (iii) The diagonals are unequal and the adjacent sides are equal.
- (iv) All the sides are equal and one angle is 60°.
- (v) All the sides are equal and one angle is 90°.

(vi) All the angles are equal and the adjacent sides are unequal.

Ans: (i) rectangle (ii) square (iii) rhombus (iv) rhombus (v) square (vi) rectangle

2. Q. State whether True or False.

a) All rectangles are squares

Answer: All squares are rectangles but all rectangles can't be squares, so this statement is false.

(b) All kites are rhombuses.

Answer: All rhombuses are kites but all kites can't be rhombus

(c) All rhombuses are parallelograms

Answer: True

(d) All rhombuses are kites.

Answer: True

(e) All squares are rhombuses and also rectangles

Answer: True; squares fulfill all criteria of being a rectangle because all angles are right angle and opposite sides are equal. Similarly, they fulfill all criteria of a rhombus, as all sides are equal and their diagonals bisect each other.

(f) All parallelograms are trapeziums.

Answer: False;

All trapeziums are parallelograms, but all parallelograms can't be trapezoid.

(g) All squares are not parallelograms.

Answer: False; all squares are parallelograms

(h) All squares are trapeziums. Answer: True

<u>3. Q.</u> In the adjacent figure, ABCD is a rectangle. If BM and DN are perpendiculars from B and D on AC, prove that \triangle BMC $\cong \triangle$ DNA. Is it true that BM = DN?

Solution:

In Δs BMC and DNA,

BC = DA [Opposite sides]

 \angle BCM = \angle DAN (alternate angles)

 \angle DNA = \angle BMC = 90° [DN and BM are perpendicular to AC]

By AAS Congruency,

 $\Delta \text{ BMC}\cong \Delta \text{ DNA}$

ACBSE Coaching for Mathematics and Science

By CPCT, BM=DN

4.Q. In the adjacent figure, ABCD is a parallelogram and line segments AE and CF bisect the angles A

and C respectively. Show that AE || CF.

Solution: <A=<C [Opposite angles]

Given that, line segments AE and CF bisect the angles A and

C respectively

 $^{1}/_{2} \angle A = ^{1}/_{2} \angle C$,

 $\Rightarrow \angle \mathsf{DAE} = \angle \mathsf{BCF}$ ------(i)

Now, In Δs ADE and CBF,

AD = BC [Opposite sides]

 $\angle B = \angle D$ [Opposite angles]

 $\angle DAE = \angle BCF$ [from (i)]

Therefore, \triangle ADE $\cong \triangle$ CBF [By ASA congruency]

By CPCT, DE=BF

But, CD=AB \Rightarrow CD - DE = AB - BF. So, CE = AF.

Therefore, AECF is a quadrilateral having pairs of side parallel and equal, So, AECF is a parallelogram.

Hence, AE || CF.

5.Q. The lengths of the diagonals of a rhombus are 16 cm and 12 cm

respectively. Find the length of each of its sides.

Solution:

Let, AC=12cm and BD=16cm

BO=1/2BD=8cm also, A0 =1/2 AC=6cm

Now, In Right \triangle AOB,

 $AB^2 = AO^2 + OB^2$

 $AB^2 = 6^2 + 8^2 = 100 = 10^2$

The length of each of its sides=10cm

6.Q. In the given figure ABCD is a square. Find the measure of \angle CAD.

Solution: In \triangle ADC,

$$\mathsf{DA} = \mathsf{DC}$$

 $\Rightarrow \angle ACD = \angle DAC = x^{\circ}$ (say)

Then, $\angle ACD + \angle DAC + < AD C = 180^{\circ}$

 $\Rightarrow x^{\circ} + x^{\circ} + 90^{\circ} = 180^{\circ}.$

 \Rightarrow x = 90/2=45[°]

ACBSE Coaching for Mathematics and Scient $\Rightarrow \angle OAD = 30^{\circ}$

 $\therefore \angle DAB = 60^{\circ}$ $\therefore \triangle DAB$ is an equilateral triangle

(ii) Now OD = 6 cm

 \Rightarrow OD + OB = BD =6 cm + 6 cm = BD = 12 cm Since, AB = BD = AD = 12 cm \Rightarrow AB = 12 m.

(iii) Now Perimeter = $4 \times \text{side} = (4 \times 12) \text{ cm} = 48 \text{ cm}$

Hence, the perimeter of the rhombus = 48 cm.

10. Q. In a quadrilateral ABCD, AC and BD are the bisectors of <A and <B resp. Prove that <AOB = 1/2 (<C + < D)

Given, AO and BO are the bisectors of angle A and angle B respectively.

From (1) and (2) we get, AD = BC12. Q. ABCD is a rhombus in which the altitude from D to side AB bisects AB. Then find value of < A and < B respectively. Solution: Given : ABCD is a rhombus. DE is the altitude on AB such that AE = EB. In $\triangle AED$ and $\triangle BED$, DE = DE (Common side) $\angle DEA = \angle DEB (90^\circ)$ AE = EB (Given) $\therefore \Delta AED \cong \Delta BED$ (SAS congruence rule) \Rightarrow AD = BD (C.P.C.T.) Also, AD = AB [Sides of rhombus are equal] $\Rightarrow AD = AB = BD$ Thus, $\triangle ABD$ is an equilateral triangle. $\therefore \angle A = 60^{\circ}$ $\Rightarrow \angle C = \angle A = 60^{\circ}$ [Opposite angles of rhombus are equal] $\angle ABC + \angle BCD = 180^{\circ}$ [Sum of adjacent angles of a rhombus is supplementary] D R $\therefore \angle ABC + 60^\circ = 180^\circ$ $\Rightarrow \angle ABC = 180^{\circ} - 60^{\circ}$ $\Rightarrow \angle ABC = 120^{\circ}$ $\therefore \angle ADC = \angle ABC = 120^{\circ}$ [Opposite angles of a rhombus are equal] Thus, angles of rhombus are 60°, 120°, 60° and 120°. 13. Three angles of a quadrilateral are in the ratio 3:4:5. The difference of the least and the greatest of these angles is 45. Find all the four angles of the quadrilateral. Ans: The ratio of the three angles of quadrilateral = 3:4:5Let the angles be 3x, 4x and 5x. The greatest angle among these is 5x and the least is 3x. According to the question, 5x - 3x = 45

 $\Rightarrow 2x = 45$

$$\Rightarrow$$
 x = 45 ÷ 2

Hence, the three angles of quadrilateral are $3 \times 22.5 = 67.5^{\circ}$, $4 \times 22.5^{\circ} = 90^{\circ}$ and $5 \times 22.5^{\circ} = 112.5^{\circ}$. Fourth angle of quadrilateral = $360^{\circ} - 67.5^{\circ} + 90^{\circ} + 112.5^{\circ} = 360^{\circ} - 270^{\circ} = 90^{\circ}$