<u>MODEL TEST PAPER SUMMATIVE ASSESSMENT-I</u> (<u>Unsolved-1</u>)

т.	01			3.6	M 1 00		
<u>11m</u>	<u>e: 3hr</u>	•		Ma	<u>x Marks: 80</u>		
Gene	ral Inst	tructions:-					
	1.	Section A Q.1. to Q.10. carry 1 mark each.					
	2.	Section B Q.11. to Q.20. carry 2 marks each.					
	3.	Section C Q.21. to Q.30. carry 3 marks each.					
	4.	Section D Q.31. to Q.35. car	rry 4 marks each.				
===	====	======================================	======================================	======	======		
Q.1.	In the equation $2x + y - 11 = 0$ the value of x when $y = 0$ is						
	(i)	$\frac{2}{11}$	(iii) (iv)	<u>-2</u>			
		11		11			
	(ii)	$\frac{-11}{2}$	(iv)	<u>11</u>			
Q.2.		One card is drawn from a pack of 52 cards. What is the probability that the card drawn is queen?					
	<i>(i)</i>	5	(iii)	1			
		22		7			
	(ii)	$\frac{5}{22}$ $\frac{1}{13}$	(iii) (iv)	2			
0.0					<u>_</u>		
Q.3.	The squa	smallest number by which 18 re is	0 must be multipli	ed so that it b	ecomes a perfect		
	<i>(i)</i>	6 <i>(ii)</i> 9	(iii)	3	(<i>iv</i>) 5		
Q.4.	If PO	QRS is a kite then PQ =	·				
	<i>(i)</i>	PS	(iii)	PR			
	. ,	SR	(iv)	QS			
05							
Q.5.	II / 2	$2 \times k$ is a perfect cube, then the	value of K 1s				
	(i)	9 <i>(ii)</i> 2	(iii)	3	(<i>iv</i>) 4		
Q.6.	The	product of $\left(\frac{a}{b} - \frac{b}{a}\right) \left(\frac{a}{b} - \frac{b}{a}\right)$ is					

	<i>(i)</i>	$\frac{a^2}{b^2} + \frac{b^2}{a^2} - 2ab$	(iii)	$\frac{a^2}{b^2} + \frac{b^2}{a^2} + 2$	
	(ii)	$\frac{a^2}{b^2} + \frac{b^2}{a^2} - 2$	(iv)	$\frac{a^2}{b^2} + \frac{b^2}{a^2} - \frac{2}{ab}$	
Q.7.	What is the sum of all the exterior angles of a 8 sided regular polygon?				
		1080^{0} 720^{0}	(iii) (iv)	360° 135°	
Q.8.	The product of $\frac{25}{14}$ and additive inverse of $\frac{-7}{5}$ is				
		$\frac{125}{98}$	(iii)	$\frac{5}{2}$	
	(ii)	$\frac{-125}{98}$	(iv)	None of these	
Q.9.	Number of non-squares lie between the squares of $n \& (n + 1)$				
	(i)	n	(iii)	2n	
	(ii)	n^2	(iv)	None of these	
Q.10.). The cube root of -1000 is				
	<i>(i)</i>	10	(iii)	-10	
	(ii)	100	(iv)	-100	
		<u>SECTION – 'B'</u>			

- Q.11. Three consecutive integers add up to 51. Find the integers.
- Q.12. ABCD is a trapezium in which AB || CD. If $\angle A = 50^{\circ}$. What is the measure of $\angle D$?
- Q.13. Find the measurement of unknown angle 'x'.

Q.14. Following frequency distribution table shows marks (out of 50) obtained in English by 45 students of class VIII.

Class interval	Frequency
0 - 10	1
10 - 20	6
20 - 30	20
30 - 40	12
40 - 50	6
Total	45

- (*i*) What is the size of class intervals?
- (ii) Which class has the highest frequency?
- (*iii*) What is the upper limit of the class interval 30 40?
- *(iv)* Which two classes have the same frequency?

Q.15. The area of a square park is $30\frac{1}{4}m^2$. Find the length of each side of the park.

- Q.16. (i) Express 81 as the sum of 9 odd numbers.
 - (ii) How many numbers lie between squares of 15 and 16?
- Q.17. Is 53240 a perfect cube? Justify your answer.
- Q.18. Subtract -5(xy-y) from 2y(-11x+7).
- Q.19. (i) Write a monomial with 'a' and 'b' as variables.
 - (ii) Identify the terms in the given expression and write their numerical

coefficients.
$$\left(\frac{x}{2} - xy\right)$$

Q.20. Simplify $n^2(n-2) + 2n^3(n+3) - 6n(n-4)$ and then find its value for n = -1.

SECTION - 'C'

- Q.21. The adjacent angles of a parallelogram are in the ratio 2 : 3. Find the angles.
- Q.22. Construct a quadrilateral ABCD where AB=4 cm, BC=5cm, CD=6.5cm and $\angle B=105^{\circ}$ and $\angle C=80^{\circ}$.
- Q.23. Find the side of a cube when volume of cube is 2744 cm^3 .
- Q.24. The perimeter of a parallelogram is 180cm. One side exceeds the other by 10cm. What are the lengths of adjacent sides of the parallelogram?

- Q.25. If $x + \frac{1}{x} = 5$, find $x^2 + \frac{1}{x^2}$.
- Q.26. Find the square root of 37.0881 by division method.
- Q.27. The four angles of a quadrilateral are x^0 , $(x-10)^0$, $(x+30)^0$ and $2x^0$. Find all the angles of the quadrilateral and also write the greatest angle.
- Q.28. Solve the following equation and check your result. $5x + \frac{7}{2} = \frac{3}{2}x 14$
- Q.29. Find using appropriate properties. $\frac{1}{3} \times \frac{5}{6} + \frac{5}{2} + \frac{2}{3} \times \frac{1}{3}$

<u>SECTION – 'D'</u>

- Q.30. Find the smallest 4-digit number which is a perfect square.
- Q.31. On a particular day the sales (in rupees) of different items of a bakers shop are given below:

Item	Sales in (₹)
Ordinary bread	320
Fruit bread	80
Cakes and pastries	160
Biscuits	120
Others	40
Total	720

Draw a pie chart for this data.

- Q.32. Construct a rhombus PQRS whose one side PQ=5cm and diagonal PR=6cm. Measure the length of the other diagonal.
- Q.33. The sum of the digits of a 2-digit number is 12. If the number formed by reversing its digits is greater than the original number by 18. Find the original number.
- Q.34. Find the least number that must be added to 1300 so as to get a perfect square. Also find the square root of the perfect square.
- Q.35. Solve using suitable identity:
 - (*i*) (x-10)(x+9) (*ii*) 56^2-44^2 .