MODEL TEST PAPER SUMMATIVE ASSESSMENT-I (Unsolved-1)

Time: 3hr.

Max Marks: 80

General Instructions:-

1. Section A Q.1. to Q.10. carry 1 mark each.
2. Section B Q.11. to Q.20. carry 2 marks each.
3. Section C Q.21. to Q.30. carry 3 marks each.
4. Section D Q.31. to Q.35. carry 4 marks each.
 SECTION - 'A'
Q.1. In the equation $2 x+y-\mathbf{1 1}=\mathbf{0}$ the value of x when $y=0$ is
(i) $\frac{2}{11}$
(iii) $\frac{-2}{11}$
(ii) $\frac{-11}{2}$
(iv) $\frac{11}{2}$
Q.2. One card is drawn from a pack of 52 cards. What is the probability that the card drawn is queen?
(i) $\frac{5}{22}$
(iii) $\frac{1}{7}$
(ii) $\frac{1}{13}$
(iv) $\frac{2}{52}$
Q.3. The smallest number by which 180 must be multiplied so that it becomes a perfect square is
(i) 6
(ii) 9
(iii) 3
(iv) 5
Q.4. If PQRS is a kite then $\mathrm{PQ}=$ \qquad .
(i) PS
(iii) PR
(ii) SR
(iv) QS
Q.5. If $72 \times k$ is a perfect cube, then the value of k is
(i) 9
(ii) 2
(iii) 3
(iv) 4
Q.6. The product of $\left(\frac{a}{b}-\frac{b}{a}\right)\left(\frac{a}{b}-\frac{b}{a}\right)$ is
(i) $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-2 a b$
(iii) $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}+2$
(ii) $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-2$
(iv) $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-\frac{2}{a b}$
Q.7. What is the sum of all the exterior angles of a 8 sided regular polygon?
(i) 1080°
(iii) 360^{0}
(ii) 720^{0}
(iv) 135°
Q.8. The product of $\frac{25}{14}$ and additive inverse of $\frac{-7}{5}$ is
(i) $\frac{125}{98}$
(iii) $\frac{5}{2}$
(ii) $\frac{-125}{98}$
(iv) None of these
Q.9. Number of non- squares lie between the squares of n \& $(\mathrm{n}+1)$
(i) n
(iii) 2 n
(ii) n^{2}
(iv) None of these
Q.10. The cube root of -1000 is
(i) 10
(iii) -10
(ii) 100
(iv) -100

SECTION - 'B'

Q.11. Three consecutive integers add up to 51 . Find the integers.
Q.12. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{CD}$. If $\angle \mathrm{A}=50^{\circ}$. What is the measure of $\angle \mathrm{D}$?
Q.13. Find the measurement of unknown angle ' x '.

Q.14. Following frequency distribution table shows marks (out of 50) obtained in English by 45 students of class VIII.

Class interval	Frequency
$0-10$	1
$10-20$	6
$20-30$	20
$30-40$	12
$40-50$	6
Total	45

(i) What is the size of class intervals?
(ii) Which class has the highest frequency?
(iii) What is the upper limit of the class interval $30-40$?
(iv) Which two classes have the same frequency?
Q.15. The area of a square park is $30 \frac{1}{4} m^{2}$. Find the length of each side of the park.
Q.16. (i) Express 81 as the sum of 9 odd numbers.
(ii) How many numbers lie between squares of 15 and 16?
Q.17. Is 53240 a perfect cube? Justify your answer.
Q.18. Subtract $-5(x y-y)$ from $2 y(-11 x+7)$.
Q.19. (i) Write a monomial with ' a ' and ' b ' as variables.
(ii) Identify the terms in the given expression and write their numerical coefficients. $\left(\frac{x}{2}-x y\right)$
Q.20. Simplify $n^{2}(n-2)+2 n^{3}(n+3)-6 n(n-4)$ and then find its value for $n=-1$.
SECTION - 'C'
Q.21. The adjacent angles of a parallelogram are in the ratio $2: 3$. Find the angles.
Q.22. Construct a quadrilateral ABCD where $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{CD}=6.5 \mathrm{~cm}$ and $\angle \mathrm{B}=105^{\circ}$ and $\angle \mathrm{C}=80^{\circ}$.
Q.23. Find the side of a cube when volume of cube is $2744 \mathrm{~cm}^{3}$.
Q.24. The perimeter of a parallelogram is 180 cm . One side exceeds the other by 10 cm . What are the lengths of adjacent sides of the parallelogram?
Q.25. If $x+\frac{1}{x}=5$, find $x^{2}+\frac{1}{x^{2}}$.
Q.26. Find the square root of 37.0881 by division method.
Q.27. The four angles of a quadrilateral are $x^{0},(x-10)^{0},(x+30)^{0}$ and $2 x^{0}$. Find all the angles of the quadrilateral and also write the greatest angle.
Q.28. Solve the following equation and check your result. $5 x+\frac{7}{2}=\frac{3}{2} x-14$
Q.29. Find using appropriate properties. $\frac{1}{3} \times \frac{5}{6}+\frac{5}{2}+\frac{2}{3} \times \frac{1}{3}$

SECTION - 'D'

Q.30. Find the smallest 4-digit number which is a perfect square.
Q.31. On a particular day the sales (in rupees) of different items of a bakers shop are given below:

Item	Sales in (₹)
Ordinary bread	320
Fruit bread	80
Cakes and pastries	160
Biscuits	120
Others	40
Total	720

Draw a pie chart for this data.
Q .32 . Construct a rhombus PQRS whose one side $\mathrm{PQ}=5 \mathrm{~cm}$ and diagonal $\mathrm{PR}=6 \mathrm{~cm}$. Measure the length of the other diagonal.
Q.33. The sum of the digits of a 2-digit number is 12 . If the number formed by reversing its digits is greater than the original number by 18 . Find the original number.
Q.34. Find the least number that must be added to 1300 so as to get a perfect square. Also find the square root of the perfect square.
Q.35. Solve using suitable identity:
(i) $(x-10)(x+9)$
(ii) $56^{2}-44^{2}$.

