## MODEL TEST PAPER SUMMATIVE ASSESSMENT-I

| ( | <u>S</u> | 0 | l | V | e | d | ) |
|---|----------|---|---|---|---|---|---|
|   |          |   |   |   |   |   |   |

|                   |                                      | (30               | Divea)           |       |                 |
|-------------------|--------------------------------------|-------------------|------------------|-------|-----------------|
| <u>Time: 3hr</u>  |                                      |                   |                  |       | Max Marks: 80   |
| <b>General In</b> | struction –                          |                   |                  |       |                 |
| 1.                | Section A Q.1. to Q.10. car          | rru 1 m           | ark each         |       |                 |
| <i>2</i> .        | Section B Q.11. to Q.20. c           | -                 |                  |       |                 |
| 2.<br>3.          | Section C Q.21. to Q.30. c           | -                 |                  |       |                 |
| <i>4</i> .        | Section D Q.31. to Q.35. c           | -                 |                  |       |                 |
| 5.                | All questions are compulso           | -                 |                  |       |                 |
|                   |                                      | - <u> </u>        |                  |       |                 |
|                   |                                      | Sect              | tion - <u>A</u>  |       |                 |
|                   | 1                                    |                   |                  |       |                 |
| Q.1. The          | additive Inverse of $\frac{-1}{-1}$  | <u>.0</u> is<br>7 |                  |       |                 |
|                   |                                      | -                 |                  |       |                 |
| (i)               | <u>10</u>                            | (ii)              | <u>10</u>        |       |                 |
|                   | - /                                  |                   | /                |       |                 |
| (iii)             | <u> </u>                             | (iv)              | <u>-7</u><br>-16 |       |                 |
|                   | 16                                   |                   | - 16             |       |                 |
| Q.2. The          | cube root of (- 1000) i              | is                |                  |       |                 |
|                   |                                      |                   | 10               |       |                 |
| (i)               | 10                                   |                   | - 10             |       |                 |
| (iii)             | 100                                  | (iv)              | - 100            |       |                 |
| Q.3. Wha          | t is the negative of a n             | egativ            | ve rational numb | er.   |                 |
|                   | _                                    | _                 |                  |       |                 |
| (i)               | Negative                             | (ii)              | positive         |       |                 |
| Q.4. Ever         | y rational number is a               | n inte            | ger              |       |                 |
| (i)               | True                                 | (ii)              | False            | (iii) | not always true |
|                   |                                      | . ,               |                  | ()    |                 |
| Q.5. For a        | an integer a, a <sup>3</sup> is alwa | ys po             | sitive.          |       |                 |
| (i)               | True                                 | (ii)              | False            | (iii) | not always true |
| Q.6. The          | sum of ab, -bc, ca, -al              | o, -ca            | & bc is          |       |                 |
|                   |                                      |                   |                  |       |                 |
| <i>(i)</i>        | -ab                                  | (ii)              | 0                |       |                 |
| (iii)             | ab                                   | (iv)              | none of these    |       |                 |
| Q.7. The          | coefficient of m is -9n              | 1 <b>x</b> + 4    | 1 is             |       |                 |
| (i)               | - 9                                  | (ii)              | 0                |       |                 |
| ( )               |                                      |                   | _                |       |                 |
| (iii)             | – 9x                                 | (iv)              | 9x               |       |                 |
|                   |                                      |                   |                  |       |                 |

**Q.8.** The constant in  $x^2 - 3$  is

(i) 
$$-1$$
  
(ii)  $1$   
(iv)  $-3$   
Q.9. Product of  $(\frac{1}{2}a - \frac{1}{5}b)$  and  $(\frac{1}{2}a + \frac{1}{5}b)$  is  
(i)  $\frac{1}{4}a^2 + \frac{1}{25}b^2$   
(ii)  $\frac{1}{4}a^2 - \frac{1}{25}b^2$   
(iii)  $\frac{1}{4}a^2 - \frac{1}{25}b^2$   
(iv) none of these

Q.10. If x = 3, which expression has a different value from the other three?

(i)  $x^2 + 9x$  (ii)  $2x^2$ (iii) 12x (iv)  $x^2 (x-1)^2$ 

#### Section - B

- **Q.11.** Find the square root of  $\sqrt{49} \times \sqrt{144}$
- Q.12. Is 256 a perfect cube? Show steps.
- **Q.13.** Plot  $\frac{-2}{5}$  and  $\frac{2}{5}$  on the same number line.
- Q.14. Is (6, 9, 11) a Pythagorean triplet? (Show).
- Q.15. Express  $(2x + 3y^3)^2$  as a trinomial.
- Q.16. Rohan rolls a die. What are the chances of getting a number which is even?
- Q.17. Find the number of sides of regular polygon whose each exterior angle has a measure of  $45^{\circ}$ .
- Q.18. Find the measure of x.



#### Q.19. Find the measure of y.



- Q.21. Evaluate : √9.3025
- Q.22. The denominator of a rational number is greater than its numerator by 3. If 3 is subtracted from the numerator and 2 is added to its denominator, the new number becomes 1/5. Find the original number.

# Q.23. The area of square field is $101\frac{1}{400}$ m sq. Find the length of its side.

Q.24. The sum of 2 rational numbers is  $\frac{-3}{5}$  If one of the number is  $\frac{-9}{20}$ , find the other.

Q.25. Solve : 
$$\frac{x+b}{a-b} = \frac{x-b}{a+b}$$

- Q.26. The ratio of 2 sides of a parallelogram is 3:5 and its perimeter is 48m. Find the length of the sides of the parallelogram.
- Q.27. The volume of a cubical box is 13.824 cubic metres. Find the length of each side of the box.
- Q.28. Find the cube root of 438976.
- Q.29. Find the smallest four digit number which is a perfect square.
- Q.30. Find 3 rational numbers between 1 and 1.

#### Section – D

Q.31. Construct the histogram based on the data given below. It represents the number of miles per gallon of gasoline obtained by 40 drivers of compact cars in a large city.

| Interval  | 16-19 | 20-23 | 24-27 | 28-31 | 32-35 | 36-39 | 40-43 |
|-----------|-------|-------|-------|-------|-------|-------|-------|
| Frequency | 5     | 11    | 8     | 5     | 7     | 3     | 1     |

#### Answer the following questions:

- *(i)* What is the number of cars reporting mileages between 28 and 31 miles per gallon?
- (ii) How many cars reported mileages greater than 31 miles per gallon?
- (iii) What percent of the cars reported mileages from 24-27 miles per gallon?
- Q.32. Construct a quadrilateral PQRS, PQ = 5.5 cm, QR= 4 cm, RS = 4.4 cm, and PS=3.2 cm and  $\angle P = 75^{\circ}$ .
- Q.33. Find the product of  $\left(y + \frac{2}{7}y^2\right)$  and  $(7y y^2)$  and verify the result for y = 3.
- Q.34. If  $4x^2 + y^2 = 40$  and xy = 6. Find the value of 2x + y.
- Q.35. In a parallelogram ABCD, the bisectors of angle A and angle B meet at O. Find angle AOB.



\_\_\_\_\_\_

#### **SOLUTIONS**

| Q.1. (a)   | Q.2. (b) | Q.3. (b) |
|------------|----------|----------|
| Q.4. (b)   | Q.5. (b) | Q.6. (b) |
| Q.7. (c)   | Q.8. (d) | Q.9. (b) |
| 0, 10, (1) |          |          |

Q.10. (b)

#### Section-B

Q.11.  $\sqrt{49} \times \sqrt{144}$ 

 $= \sqrt{7 \times 7} \times \sqrt{3 \times 3 \times 4 \times 4}$  $= 7 \times 3 \times 4 = 7 \times 12 = 84$ 

Q.12. Resolving 256 into prime factors

We have

 $256 = 2 \times 2$ 

clearly in grouping the factors in triples of equal factors. We are left with two factors

 $2 \times 2$ . Therefore 256 is not a perfect cube.

Q.13.  $\frac{2}{5}$  and  $\frac{-2}{5}$  on the number line.

Q.14. To form a Pythagorean Triplet, the number should be 2m, (m<sup>2</sup>-1), (m<sup>2</sup>+1)  $(2m)^2 + (m^2-1)^2 = (m^2+1)^2$   $6^2 + 9^2 = 11^2$  $36 + 81 \neq 121$ 

... 6, 9, 11 does not form a Pythagorean Triplet

Q.15.  $(2x + 3y^3)^2$  as a trinomial Using  $(a + b)^2 = a^2 + 2ab + b^2$ =  $(2x)^2 + (3y^3)^2 + 2 \times 2x \times 3y^3$ =  $4x^2 + 9y^6 + 12xy^3$ 

### Q.16. Total numbers appearing on the dice = 6 Chances of getting even numbers on a die (2, 4, 6) = $\frac{3}{6}$ $\frac{1}{2}$

- Q.17. Total measure of all exterior angles of a polygon =  $360^{\circ}$ Measure of each exterior Angle =  $45^{\circ}$ 
  - $\therefore \quad \text{The number of exterior angles} = \frac{360^{\circ}}{45^{\circ}} = 8$ The polygon has 8 sides.

#### Q.18. Since the sum of the measures of exterior angles of a polygon is $360^{\circ}$

- $\therefore \ 125^0 + x^0 + 125^0 = 360^0$
- $\Rightarrow \quad 250^{\circ} + x^{\circ} = 360^{\circ}$
- $\Rightarrow$   $x^0 = 360^0 250^0 = 110^0$
- Q.19. Since the sum of of the measures of exterior angles of a polygon is  $360^{\circ}$  $\therefore y^{\circ} + 90^{\circ} + 60^{\circ} + 90^{\circ} + 70^{\circ} = 360^{\circ}$

⇒ 
$$y^0 + 310^0 = 360^0$$
  
⇒  $y^0 = 360^0 - 310^0 = 50^0$ 

Q.20. 
$$\frac{x^2 - 9}{x^2 - 3} = \frac{-5}{2}$$

 $5^{-1} 5 + x^2$  9

By cross multiplication

$$\Rightarrow 9 (x^{2} - 9) = -5 (5 + x^{2})$$
  

$$\Rightarrow 9x^{2} - 81 = -25 - 5x^{2}$$
  

$$\Rightarrow 9x^{2} + 5x^{2} = -25 + 81$$
  

$$\Rightarrow 14x^{2} = 56$$
  

$$\Rightarrow x^{2} = \frac{56}{14} \implies x^{2} = 4 \implies x^{2} = 2^{2} \implies x = 2$$

Q.21. 3.05

$$\sqrt{9.3025} = \sqrt{9.3025} = 3.05$$

Q.22. Let the numerator be x.

Then, the denominator = (x + 3)

$$\therefore \frac{x-3}{(x+3)+2} = \frac{1}{5}$$

$$\Rightarrow \frac{x-3}{x+5} = \frac{1}{5} \qquad \Rightarrow 5 (x-3) = (x+5) \qquad \Rightarrow 5x-15 = x+5$$

$$\Rightarrow 4x = 20 \qquad \Rightarrow x = 5$$
Numerator = 5
$$\therefore \quad \text{Denominator} = (5+3) = 8$$

$$\therefore \quad \text{The required number is } \frac{5}{8}$$

Q.23. Let the length of one side of the square field be x metres.

Area of the field =  $x^2$ . Given: Area of the field =  $101 \frac{1}{400} \text{ m}^2$  $x^2 = \frac{40401}{400}$  m<sup>2</sup>  $\therefore x = \sqrt{\frac{40401}{400}} = x = \frac{\sqrt{40401}}{\sqrt{400}}$  $\therefore x = \frac{\sqrt{40401}}{\sqrt{400}} = \frac{201}{20}$ Hence, the length of one side of the field is  $\frac{201}{20}$  m. Q.24. Given, Sum of 2 rational numbers  $=\frac{-3}{5}$ One of the rational numbers =  $\frac{-9}{20}$ Let the other number = x  $\therefore x + \left(\frac{-9}{20}\right) = \frac{-3}{5}$  $\Rightarrow x = \frac{-3}{5} - \left(\frac{-9}{20}\right)$  $\Rightarrow$   $x = \frac{-3}{20} + \frac{9}{20} = \frac{-12 + 9}{20} = \frac{-3}{20}$ Q.25.  $\frac{x+b}{a-b} = \frac{x-b}{a+b}$ By cross multiplication

$$\Rightarrow (x + b) \times (a + b) = (x - b) \times (a - b)$$
  

$$\Rightarrow x (a + b) + b(a + b) = x (a - b) - b(a - b)$$
  

$$\Rightarrow ax + bx + ab + b^{2} = ax - bx - ab + b^{2}$$
  

$$\Rightarrow ax - ax + bx + bx = -ab + b^{2} - ab - b^{2}$$
  

$$\Rightarrow 2bx = -2ab$$
  

$$\Rightarrow x = \frac{-2ab}{2ab} = \therefore x = -a$$

Q.26. Let one side of a parallelogram = 3x m & the other side of parallelogram = 5x m

| Perimeter = 2 (1 + b)                                                                                                                                                     |   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|
| = 2(3x + 5x)                                                                                                                                                              |   |       |
| $= 2 \times 8x = 16x \text{ m}$                                                                                                                                           |   |       |
| Given Perimeter = $48m$                                                                                                                                                   |   |       |
| $\therefore 16x = 48$ $x = \frac{48}{16}$ $x = 3 \text{ m}$                                                                                                               |   |       |
| Hence the side of the parallelogram are :                                                                                                                                 |   |       |
| $3x = 3 \times 3 = 9m$                                                                                                                                                    | 2 | 13824 |
| $5x = 5 \times 3 = 15m$                                                                                                                                                   | 2 | 6912  |
| Q.27. Given volume of a cubical box = $13.824 \text{ m}^3$                                                                                                                | 2 | 3456  |
| $V = l^3 = l^3 = 13.824$                                                                                                                                                  | 2 | 1728  |
| $l = {}^{3}\sqrt{13.824}$                                                                                                                                                 | 2 | 864   |
| $^{3}\sqrt{13824} = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}$ | 2 | 432   |
|                                                                                                                                                                           | 2 | 216   |
| Cube root = $2 \times 2 \times 2 \times 3$                                                                                                                                | 2 | 108   |
| = 24                                                                                                                                                                      | 2 | 54    |
| $^{3}\sqrt{13.824} = 2.4$                                                                                                                                                 | 3 | 27    |
| $\therefore$ Length of each side of the box = 2.4m                                                                                                                        | 3 | 9     |
|                                                                                                                                                                           | 3 | 3     |
| Q.28. Cube root of 438976                                                                                                                                                 |   | 1     |

Q.28. Cube root of 438976

| $438976 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times$ | <u>19×19×19</u> |
|------------------------------------------------------------------------------------------|-----------------|
| Cube root = $2 \times 2 \times 19$<br>= 76                                               |                 |
| √ 438976 = 76                                                                            |                 |

Q.29. Smallest 4 digit no = 1000



|    | 3 1      |   |
|----|----------|---|
| 3  | 1000     | — |
|    |          |   |
|    | 9        |   |
| 61 | 9<br>100 |   |
| 61 | -        |   |

2 438976

1024 is the smallest 4 digit number which is a perfect square.

Q.30. 
$$\frac{1}{1} \times \frac{10}{10}$$
,  $\frac{-1}{1} \times \frac{10}{10}$   
 $\frac{-10}{10}$ ,  $, \frac{-8}{10}, \frac{-7}{10}$   $---- \frac{8}{10}, \frac{9}{10}, \frac{10}{10}$ 

 $\therefore$  The four rational numbers are:



 $a^2 + b^2 = a^2 + b^2 + 2ab$ 

xy = 6

Using  $4x^2 + y = 40$ 

and

3

 $\Rightarrow (2x+y) = \sqrt{64} = 2x+y = 8$ 

Q.35. OA and O B are bisectors of angle A and angle B

 $\therefore \angle OAB = \frac{1}{2} \ \angle A, \qquad \angle OBA = \frac{1}{2} \ \angle B$ 

In  $\triangle AOB$ , using ASP

 $\angle OAB + \angle AOB + \angle OBA = 180^{\circ}$ 

 $\frac{1}{2} \angle A + \angle AOB + \frac{1}{2} \angle B = 180^{\circ}$ 

 $\angle AOB = 180^{\circ} - \frac{1}{2} (\angle A + \angle B)$ 

 $\angle AOB = 180^{\circ} - \frac{1}{2} (180^{\circ})$ 

#### $[\angle A \text{ and } \angle B \text{ are adjacent angles of parallogram ABCD}]$

 $\angle AOB = 180^{\circ} - 90^{\circ} = 90^{\circ}$ 

\_\_\_\_\_\_