1.	Choose	the o	correct	answer	for	the	foll	owing
	0110000	crrc .	COLLECT	carro cr				0

- (i) $a^m \times a^n$ is equal to
 - (A) $a^{m} + a^{n}$
- (B) a^{m-n}
- (C) a^{m+n}
- (D) a^{mn}

- (ii) p^0 is equal to
 - (A) 0
- (B) 1
- (C) 1
- (D) p

- (iii) In 10², the exponent is
 - (A) 2
- (B) 1
- (C) 10
- (D) 100

- (iv) 6^{-1} is equal to
 - (A) 6
- (B) 1
- (C) $-\frac{1}{6}$
- (D) $\frac{1}{6}$

- (v) The multiplicative inverse of 2^{-4} is
 - (A) 2
- (B) 4
- $(C) 2^4$
- (D) 4

- (vi) $(-2)^{-5} \times (-2)^6$ is equal to
 - (A) 2
- (C) 5
- (D) 6

- (vii) $(-2)^{-2}$ is equal to
- (C) $\frac{-1}{2}$
- (D) $\frac{-1}{4}$

- (viii) $(2^{0} + 4^{-1}) \times 2^{2}$ is equal to
 - (A) 2
- (B) 5
- (C) 4
- (D) 3

- (ix) $\left(\frac{1}{3}\right)^{-4}$ is equal to
- (B) 3^4
- (C) 1
- (D) 3^{-4}

- (x) $(-1)^{50}$ is equal to
 - (A) -1
- (B) 50
- (C) 50
- (D) 1

- 2. Simplify:
- (i) $(-4)^5 \div (-4)^8$ (ii) $\left(\frac{1}{2^3}\right)^2$ (iii) $(-3)^4 \times \left(\frac{5}{3}\right)^4$
- (iv) $\left(\frac{2}{3}\right)^5 \times \left(\frac{3}{4}\right)^2 \times \left(\frac{1}{5}\right)^2$ (v) $(3^{-7} \div 3^{10}) \times 3^{-5}$ (vi) $\frac{2^6 \times 3^2 \times 2^3 \times 3^7}{2^8 \times 3^6}$

- (vii) $y^{a-b} \times y^{b-c} \times y^{c-a}$ (viii) $(4p)^3 \times (2p)^2 \times p^4$ (ix) $9^{5/2} 3 \times 5^0 \left(\frac{1}{81}\right)^{-1/2}$
- (x) $\left(\frac{1}{4}\right)^{-2} 3 \times 8^{2/3} \times 4^0 + \left(\frac{9}{16}\right)^{-1/2}$
- 3. Find the value of:

 - (i) $(3^{\circ} + 4^{-1}) \times 2^{\circ}$ (ii) $(2^{-1} \times 4^{-1}) \div 2^{-2}$ (iii) $(\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}$
 - (iv) $(3^{-1} + 4^{-1} + 5^{-1})^0$ (v) $[(\frac{-2}{2})^{-2}]^2$ (vi) $7^{-20} 7^{-21}$.

4. Find the value of *m* for which

(i)
$$5^m \div 5^{-3} = 5^5$$
 (ii) $4^m = 64$

(ii)
$$4^m = 64$$

(iii)
$$8^{m-3} = 1$$

(iv)
$$(a^3)^m = a^9$$

(iv)
$$(a^3)^m = a^9$$
 (v) $(5^m)^2 \times (25)^3 \times 125^2 = 1$ (vi) $2m = (8)^{\frac{1}{3}} \div (2^3)^{\frac{2}{3}}$

(vi)
$$2m = (8)^{\frac{1}{3}} \div (2^3)^{2/3}$$

5. (a) If $2^x = 16$, find

(ii)
$$2^{\frac{x}{2}}$$

(iii)
$$2^{2}$$

(iv)
$$2^{x+1}$$

(i)
$$X$$
 (ii) $2^{\frac{x}{2}}$ (iii) 2^{2x} (iv) 2^{x+2} (v) $\sqrt{2^{-x}}$

(b) If $3^x = 81$, find

(i)
$$X$$
 (ii) 3^{x+3} (iii) $3^{x/2}$ (iv) 3^{2x} (v) 3^{x-6}

(iii)
$$3^{x/2}$$

(iv)
$$3^{2}$$

(v)
$$3^{x-6}$$

6. Prove that (i) $\frac{3^{x+1}}{3^{x(x+1)}} \times \left(\frac{3^x}{3}\right)^{x+1} = 1$, (ii) $\left(\frac{x^m}{x^n}\right)^{m+n} \cdot \left(\frac{x^n}{x^l}\right)^{n+l} \cdot \left(\frac{x^l}{x^m}\right)^{l+m} = 1$

8. Simplify.

(i)
$$\frac{25 \times t^{-4}}{5^{-3} \times 10 \times t^{-8}} \quad (t \neq 0)$$

(ii)
$$\frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

www.jsuniltutorial.weebly.com/