8th Direct and Indirect Solved Test Paper-1

1. Fill in the blanks in each of the following so as to make the statement true:
(i) Two quantities are said to vary \qquad with each other if they increase (decrease) together in such a way that the ratio of the corresponding values remains same.
(ii) x and y are said to vary directly with each other if for some positive number $\mathrm{k}, \ldots . \mathrm{k}$
(iii) If $u=3 v$, then u and v vary \ldots with each other.

Solution: (i) Directly
(ii) x and y are said to vary directly with each other if $\frac{x}{y}=\mathrm{k}$, where k is a positive number
(iii) Because $\mathrm{u}=3 \mathrm{v}=>\frac{u}{v}=3$, here 3 is a constant quantity So, u and v vary directly with each other
2. Complete the following tables given that x varies directly as y.

x	4	9	b	c	3	e
y	16	a	48	36	d	4

x varies directly as $\mathrm{y} \Rightarrow \frac{x}{y}=k=\frac{4}{16}=\frac{1}{4}$
Case $-1: \frac{1}{4}=\frac{9}{a}=>a=9 \times 4=36$
Case $-2: \frac{1}{4}=\frac{b}{48}=>b=\frac{48}{4}=12$
Case $-3: \frac{1}{4}=\frac{c}{36}=>b=\frac{36}{4}=9$
Case $-4: \frac{1}{4}=\frac{3}{d}=>d=3 \times 4=12$
Case $-5: \frac{1}{4}=\frac{e}{4}=>4=\frac{4}{4}=1$
3. 68 boxes of contain commodity require a shelf- length of 13.6 m . How many boxes of the same commodity would occupy a shelf- length of 20.4 m ?

Solution:

More length of self (x) more box (y) direct variation $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$
$\frac{X_{1}}{y 1}=\frac{x 2}{y 2}=>\frac{13.6}{68}=\frac{20.4}{y}$
$=>y=\frac{20.4 \times 68}{13.6}=104$ boxes

JsuIIL Tutorial
 ACBSE Coaching for O(athematics and Science

4. 11 men can $\operatorname{dig} 6 \frac{3}{4} \mathrm{~m}$ long trench in one day. How many men should be employed for digging 27 m long trench of the same type in one day?

Solution: more length of trench more man required (direct variation) $a / b=c / d$
$\frac{X_{1}}{y 1}=\frac{x 2}{y 2}=>\frac{11}{\frac{27}{4}}=\frac{x}{27}$
$=>\frac{44}{27}=\frac{x}{27}=>x=44$
Therefore, 44 men are required to dig a trench of 27 m .
5. $\mathbf{1 2 0}$ men had food provisions for 200 days. After 5 days, $\mathbf{3 0}$ men die due to an epidemic. How long will the remaining food last?

Solution:

Man (x)	120	$120-30=90$
Day food last (y)	$200-5=195$	y

Less man more days food last (indirect variation) $\mathrm{ab}=\mathrm{cd}$
so, $120 \times 195=90 \times x=>x=\frac{120 \times 195}{90}=260$ days
6. A car can finish a certain journey in 10 hours at the speed of $48 \mathrm{~km} / \mathrm{hr}$. By how much should its speed be increased so that it may take only 8 hours to cover the same distance?

Solution: less time more speed (indirect variation) => ab=cd
$10 \times 48=c \times 8=>c=\frac{10 \times 48}{8}=60 \mathrm{~km} / \mathrm{h}$
7. In a hostel of 50 girls, there are food provisions for 40 days. If 30 more girls join the hostel, how long will these provisions last?

Solution: more girl less days food last (indirect variation) $=>\mathrm{ab}=\mathrm{cd}$
$50 \times 40=80 \times d \Rightarrow \mathrm{~d}=\frac{50 \times 40}{80}=25$ days
8. A worker is paid Rs. 210 for 6 days work. If his total income of the month is Rs. 875 , for how many did he work?

Solution: More wages more days work (direct variation) $\Rightarrow>\frac{a}{b}=\frac{c}{d}$
$\frac{210}{6}=\frac{875}{d} \Rightarrow \mathrm{~d}=\frac{875 \times 6}{210}=25$ days
9. A train 400 m long is running at a speed of $72 \mathrm{~km} / \mathrm{hr}$. How much time does it take to cross a telegraph post?

Solution: Distance cover by train to cross a telegraph post $=$ length of train $=400 \mathrm{~m}$
Speed $=72 \mathrm{~km} / \mathrm{h}=\frac{72000 \mathrm{~m}}{3600 \mathrm{sec}}=20 \mathrm{~m} / \mathrm{sec}$
Time $=\frac{\text { distance }}{\text { speed }}=\frac{400}{20}=20 \mathrm{sec}$

 ACBSE Coaching for Olathematics and Science

10. A train 360 m long is running at a speed of $45 \mathrm{~km} / \mathrm{hr}$. What time will it take to cross a 140 m long bridge?

Solution: Distance cover by train to cross bridge
$=$ length of train + length of bridge $=360+140=500 \mathrm{~m}$
Speed $=45 \mathrm{~km} / \mathrm{h}=\frac{45000 \mathrm{~m}}{3600 \mathrm{sec}}=12.5 \mathrm{~m} / \mathrm{sec}$
Time $=\frac{\text { distance }}{\text { speed }}=\frac{500}{12.5}=40 \mathrm{sec}$
11. Length of train is 130 meters and speed of train is $45 \mathrm{~km} /$ hour. This train can pass a bridge in 30 seconds, then find the length of the bridge.

Solution: Let the length of bridge is x m
Speed of train $=45 \mathrm{~km} / \mathrm{h}=\frac{45000 \mathrm{~m}}{3600 \mathrm{sec}}=12.5 \mathrm{~m} / \mathrm{sec}$
Time $=30$ seconds
Distance cover by train to cross bridge
$=$ length of train + length of bridge $=130+x$
We know Speed $=$ distance/time $\frac{130+x}{30}=12.5$
$=>(130+x)=375=>x=375-130=245$ meters
12. A train 210 m long took 12 seconds to pass a 90 m long tunnel. Find the speed of the train.

Solution:
Solution: Distance cover by train to cross bridge
$=$ length of train + length of bridge $=210+90=300 \mathrm{~m}$, time $=12 \mathrm{sec}$
speed $=\frac{\text { distance }}{\text { Time }}=\frac{300}{12}=25 \mathrm{~m} / \mathrm{sec}$
13. If 5 men or 7 women can earn Rs 875 per day, how much would 10 men and 5 women earn per day.

Solution: 5 men $=7$ women
=> 10 men $=14$ women
$\Rightarrow>$ for 10 men and 5 women $=14+5=\mathbf{1 9}$ women
More women more earning per day (direct variation) $\Rightarrow>\frac{a}{b}=\frac{c}{d}$
$\frac{7}{875}=\frac{14}{d}=>d=\frac{14 \times 875}{7}=875 \times 2=R S .1750$
16. The cost of 16 packets of salt, each weighing 900 g , is Rs84. Find the cost of 27 packets of salt, each weighing 1 kg .

Solution: More packets more cost (Direct variation)
Less weight of each packet less cost (Direct variation)
$\underset{w 1: w 2}{p 1: p 2}:$ cost $1: \operatorname{cost} 2=>\underset{900: 1000}{16: 27}: 84: x$
$=>$ Product of extream $=$ product of mean
$=>16 \times 900 \times x=27 \times 1000 \times 84$
$=>x=\frac{27 \times 1000 \times 84}{16 \times 900}=$ Rs. 157.5
17. 25 Packets of 12 pencils each cost Rs 750 . Find the cost of 32 packets of 8 pencils each

Ans: 25 packets of 12 each $=300$ pencils for Rs 750
\Rightarrow Rate of pencil= Rs $750 / 300=$ Rs $2.5 /$ pencil
32 packets of 8 each $8(32)=256$ pencils
Cost of 256 pencils $=(256 \times 2.5)=$ Rs 640
So, 32 packets of 8 pencils each would cost Rs 640
18. If 3 persons can weave 168 shawls in 14days, how many shawls will be woven by 8 persons in 5 days?

Solution: More person more shawls weaved (direct variation)
Less days less less shawls weaved (direct variation)
person a1:a2
Days b1:c2 c1:c2(shawl) $=>\quad \begin{aligned} & 3: 8 \\ & 14: 5\end{aligned}: 168: x$
$=>$ Product of extream $=$ product of mean
$=>3 \times 14 \times x=5 \times 8 \times 168$
$=>x=\frac{5 \times 8 \times 168}{3 \times 14}=160$
19. Four examiners can examine a certain number of answer papers in 10 days by working for 5 hours a day. For how many hours in a day would 2 examiners have to work in order to examine twice the number of answer papers in 20 days?

Solution: Let the number of hours per day be x
More days, less hours per day (Indirect)
Less examiners, more hours per day (Indirect)
More answer papers, more hours per day (Direct)

Days	20	$:$	10		Time
Examiners	02	$:$	04	$::$	$5: x$

Answer papers 01 : 02
$(20 \times 2 \times 1 \times x)=(10 \times 4 \times 2 \times 5) \Rightarrow x=\frac{(10 \times 4 \times 2 \times 5)}{(20 \times 2 \times 1)}=10 \mathrm{hrs}$
20. If the cost of transporting 160 kg of goods for 125 km is Rs 60 . What will be the cost of transporting 200 kg of goods for 400 km ?

Solution: More weight more the cost of transporting (Direct) $160: 200=60: x$
More Distance more the cost of transporting (Direct) $\quad 125: 400=60: \mathrm{x}$
$\begin{aligned} & \text { 160: 200 } \\ & 125: 400\end{aligned}: 60: x \quad=>x=\frac{200 \times 400 \times 60}{160 \times 125}=$ Rs. 240
21. 6 oxen or 8 cows can graze a field in 28 days. How long would 9 oxen and 2 cows take to graze the same field?

Solution: 6 oxen $=\underline{8 \text { cows }} \Rightarrow 3$ oxen $=4$ cows => 9 oxen $=4 \times 3=12$ cows

Cows	8	14
days	28	x

9 oxen and 2 cows $=12+2=\mathbf{1 4}$ cows
More cows less days taken to graze the same field (Indirect)
Cows $28: 8$ (indirect) $:: 14: \mathrm{x}=>x=8 \times \frac{14}{28}=4$ days
22. 6 men working 8 hours a day, earn Rs. 8400 per week. What will be the earning per week of 9 men who work for 6 hours a day?

Solution: $\begin{gathered}\text { (Direct variation) } \begin{array}{c}\text { Men } \\ \text { (Direct variation) }\end{array} \text { Hrs a day } 10: 6\end{gathered}:$: $1200: x$ (Earning)
$x=\frac{9 \times 6 \times 1200}{6 \times 10}=$ Rs. 620
23. A fort had provision for 300 men for 90 days. After 20 days, 50 men left the fort. How long would the food last at the same rate?

Solution: Less man more days food last (Inirect variation)
$=>$ inverse ratio of man $=$ ratio of days
$=>(300-50): 300=(90-20): x=>250: 300=70: x=>x=\frac{70 \times 300}{250}=84$ days
24. 1200 soldiers in a fort had enough food for 28 days. After 4 days, some soldiers were transferred to another fort and thus the food lasted for an extra 32 days. How many soldiers left the fort?

Ans : 1200 soldiers - 24 days (after 4 days) then x soldiers -32 days
More days food (x) last if there will be less solders(y) (indirect)
$\mathrm{X}_{1} \times \mathrm{y}_{1}=\mathrm{x}_{2} \mathrm{y}_{2}=>24 x 1200=32 \times x=x=\frac{24 \times 1200}{32}=900$

$$
\text { Soldiers left }=(1200-900)=300 \text { soldiers }
$$

Link: https://jsuniltutorial.weebly.com/study-zone/8thviii-direct-and-inverse-proportion

