Jsuril rulainl ACBSE Coaching for OLathematics and Science

$8^{\text {th }}$ Area of trapezium Test paper Solved

1. Prove that area of trapezium is $1 / 2$ (sum of parallel sides) x height

Let $A B C D$ is a trapezium in which $A D$ II $B C$ and
Draw $A P \perp B C$ and $D Q \perp B C$ Let, $\operatorname{Height(h)~}=A P=D Q$
Area of trapezium $A B C D=\frac{1}{2}($ area of $\triangle B A P)+$ are (Rectangle APQD) + area(rectangle DQC)
$=\frac{1}{2} B P \times A P+P Q \times h+\frac{1}{2} Q C \times h=\frac{1}{2} h(B P+2 P Q+Q C)$

$=\frac{1}{2} h\{(B P+P Q+Q C)+A D\}[$ using $A D=P Q]=\frac{1}{2} h\{(B C+A D\}$
2. In a trapezium one of the parallel side is 6 cm longer than the others. If its area please 168 cm square. If distance b / w two parallel side is 8 cm find the length of parallel sides

Sol: Let one of the parallel side $=x$, Then other parallel side is $=x+6, h=8 \mathrm{~cm}$, Area $=168 \mathrm{~cm}^{2}$
Now, Area of trapezium $=168$
$\Rightarrow 1 / 2(x+x+6) \times 8=168$
$\Rightarrow 2 x+6=\frac{168}{4}$
$\Rightarrow 2 x=42-6$
$\Rightarrow x=\frac{36}{2}=18 \mathrm{~cm}$
One of the parallel side $=x=18 \mathrm{~cm}$, Then other parallel side $=x+6=18+6=24 \mathrm{~cm}$
3. In a trapezium one of the parallel side is double the other. If area is $9450 \mathrm{~m}^{2}$ and height is 84 m . Find the length of parallel sides.

Solution: Let one of the parallel side $=x$, Then other parallel side is $=2 x, h=84 m$, Area $=9450 \mathrm{~m}^{2}$

Now, Area of trapezium $=9450$
$\Rightarrow 1 / 2(x+2 x) \times 84=9450$
$\Rightarrow 3 x=\frac{9450}{42}=225$
$\Rightarrow x=\frac{225}{3}=75 \mathrm{~m} \quad \Rightarrow x=\frac{36}{2}=18 \mathrm{~cm}$
Hence, one of the parallel side $=x=75 \mathrm{~m}$, Then other parallel side $=2 \mathrm{x}=2 \times 75=150 \mathrm{~cm}$

JsuTIL -TUTOBIAL ACBSE Coaching for O(athematics and Science

4. In a trapezium parallel sides are 20 cm and 10 cm . If non parallel equal sides are each 13 cm . Find its area

Let In trapezium $A B C D, A B=20 \mathrm{~cm}, C D=10 \mathrm{~cm}$
We have to find hight $\mathrm{h}=\mathrm{CP}$ (fig)
Draw CEIIAD and $C P \perp A B$
So In quadrilateral AECD -> ADIICE and AE IICD

So, $A E C D$ will be Ilgm. Thus, $A E=C D=10 \mathrm{~cm}$ and $C E=A D=B C=$ 13 cm

$$
\Rightarrow B E=A B-A E=20-10=10 \mathrm{~cm}
$$

Now, $\triangle \mathrm{BEC}, s=\frac{a+b+c}{2}=\frac{13+13+10}{2}=18$
Area of $\Delta \mathrm{BEC} \sqrt{s(s-a)(s-b)(s-c)}=\sqrt{18(18-13)(18-13)(18-10)}=\sqrt{18 \times 5 \times 5 \times 8}=60 \mathrm{~cm} 2$
But area of $\triangle \mathrm{BEC}=\frac{1}{2} B E \times D P=>60=\frac{1}{2} \times 10 \times h=>h=\frac{60}{5}$

$$
=12 \text { https://jsuniltutorial.weebly.com/ }
$$

Area of trapezium $=\frac{1}{2}($ sum of parallel sides $) x$ height $=\frac{1}{2}(20+10) x 12=180 \mathrm{~cm}^{2}$
5. In the given figure, perimeter of trapezium 130 cm . Find its area

https://isuniltutorial.weebly.com/

Perimeter of trapezium $130 \mathrm{~cm}=A B+B C+C D+A D \Rightarrow>130=A B+54+19+42 \Rightarrow A B=15 \mathrm{~cm}$
Area of trapezium $=\frac{1}{2}($ sum of parallel sides $) x$ height $=\frac{1}{2}(54+42) \times 15=720 \mathrm{~cm}^{2}$
6. Find the area of following figures using given data
(i) In Right triangle $A B C, A C=\sqrt{5^{2}-4^{2}}=\sqrt{25-16}=\sqrt{ } 9=3 \mathrm{~cm}$

So, $A D=4+3=7 \mathrm{~cm}$
now area of rectangle $\mathrm{ADEH}=7 \times 8=56 \mathrm{~cm}^{2}$
Area of $\mathrm{ABC}+$ Rea of HGF $=2 \times 1 / 2 \times 4 \times 5=20 \mathrm{~cm}^{2}$
Hence area of ABCDEFGH $=56+20=76 \mathrm{~cm}^{2}$

JSITIL TUTOBIAL ACBSE Coaching for Ohathematics and Science

(ii) Area of fig $=$ area of trapezium + Ara of square

$$
\begin{aligned}
& =\frac{1}{2}(\text { sum of parallel sides }) x \text { height }+(\text { side })^{2} \\
& =\left\{\frac{1}{2}(20+6) x 8\right\}+(20 \times 20) \\
& =104+400=504 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii) In Right triangle $A B C$,
$A C^{2}-B C^{2}=A B^{2}=>A C^{2}=41^{2}-40^{2}$
$=>A C=\sqrt{1681-1600}=\sqrt{81}=9 \mathrm{~cm}$
area of trapezium $=\frac{1}{2}$ (sum of parallel sides) x height

$$
=\frac{1}{2} x(40+16) x 9=\frac{504}{2}=252 \mathrm{~cm}^{2}
$$

(iv) $A B L D$ is rectangle so, $B L=A D=7 \mathrm{~cm}$ then $C L=B C-B L=13-7=6 \mathrm{~cm}$
$D C^{2}-L C^{2}=D L^{2}=>D L^{2}=10^{2}-6^{2}$
$=>A C=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$
area of trapezium $=\frac{1}{2}$ (sum of parallel sides) x height $=$ $\frac{1}{2} x(13+7) \times 8=80 \mathrm{~cm}^{2}$

Question for Practice:

1. Q. Find the area of a trapezium whose parallel sides of lengths 10 cm and 15 cm are at a distance of 6 cm from each other. Calculate this area as: (i) the sum of the areas of two triangles and one rectangle. (ii) the difference of the area of a rectangle and the sum of the areas of two triangles.

Ans: 75 cm 2

2. Q. The area of a trapezium is 384 cm 2 . Its parallel sides are in the ratio $3: 5$ and the perpendicular distance between them is 12 cm . Find the length of each one of the parallel sides.(ans: $24 \mathrm{~cm}, 40 \mathrm{~cm}$)
3. . The parallel sides of a trapezium are 25 cm and 13 cm ; its nonparallel sides are equal, each being 10 cm , find the area of the trapezium.(Ans 152 cm 2) https://jsuniltutorial.weebly.com/
4.Find the area of a trapezium whose parallel sides are $25 \mathrm{~cm}, 13 \mathrm{~cm}$ and the other sides are 15 cm each. (Ans: $57 \sqrt{ } 21 \mathrm{~cm}^{2}$)
