JSUIIL TUTOBIAL
 ACBSE Coaching for OSathematics and Science

$8^{\text {th }}$ Algebric expression Solved Test papers
(1) Subsfact: $4 r^{2}+5 q^{2}-6 r^{2}+7$ for $3 p^{2}-4 q^{2}-5 r^{2}-6$
(1) What must be subsfincted form $\left(3 a^{2}-6 a b-3 b^{2}-1\right)$ to get $\left(4 a^{2}-7 a b-46^{2}+1\right)$
(5.) Fand product: (i) $\left(x^{4}+\frac{1}{x^{4}}\right)\left(x+\frac{1}{x}\right)$ (i) $\left(x^{2}+x y+y^{2}\right)(x-y)$ (in) $\left(x^{2}-5 x+x\right)\left(x^{2}+2 x-3\right)$
4. Devidx: III $\left(2 x^{2}+3 x+1\right)$ by $(x+1)$
(II) $x^{3}-6 x^{2}+9 x-2$ by $(x-2)$
5. Find remaender when $\left(7+15 x-13 x^{2}+5 x^{3}\right)$ demided by $\left(4-3 x+x^{2}\right)$
6. Find quotient \{wheno1) $\left(x^{3}-1\right)$ is duvided by $(x-1)$ (11) $\left(x^{3}+1\right)$ dawided by $(x+1)$
7. Find continuous product : (i) $(x+1)(x-1)\left(x^{2}+1\right)$ (ii) $(2 p+3)(2 p-3)\left(4 p^{2}+9\right)$
8. $\frac{f}{} x+\frac{1}{x}=4$ find $\left(x^{2}+\frac{1}{x^{2}}\right)$ and $\left(x^{4}+\frac{1}{x^{4}}\right)$
9. if $(x-y)=7$ and $x y=$, fand $\left(x^{2}+y^{2}\right)$
(10) Semplify: $\frac{118 \times 198-102 \times 102}{98}$

Solution

1. $\quad 3 p^{2}-4 q^{2}-5 r^{2}-6$
$\frac{-4 p^{2} \pm 5 q^{2} \mp 6 r^{2} \pm 7}{-p^{2}-9 q^{2}+r^{2}-13}$
2. $\left(3 a^{2}-6 a b-3 b^{2}-1\right)-P=\left(4 a^{2}-7 a b-4 b^{2}+1\right)$
$\binom{3 a^{2}-6 a b-3 b^{2}-1-4 a^{2}}{+7 a b+4 b^{2}-1}=$
$\Rightarrow \quad-a^{2}+a b+b^{2}-2=$ P
3.(1) $x^{4}(x+1 / x)+\frac{1}{x^{4}}\left(x+\frac{1}{x}\right)=x^{5}+\frac{x^{4}}{x}+\frac{x}{x^{4}}+\frac{1}{x^{5}}$ $=x^{5}+\frac{x^{3}}{1}+\frac{1}{x^{4}}+\frac{1}{x^{5}}$

$$
\begin{aligned}
& 3(11) x\left(x^{2}+x y+y^{2}\right)-y\left(x^{2}+x y+y^{2}\right) \\
& =x^{3}+x^{2} y+x / y^{2}-x^{2} y-x y y^{2}-y^{3}=x^{3}-y^{3} \\
& 3(111) x^{2}\left(x^{2}+2 x-3\right)-5 x\left(x^{2}+2 x-3\right)+8\left(x^{2}+2 x-3\right) \\
& =x^{4}+2 x^{3}-3 x^{2}-5 x^{3}-10 x^{2}+15 x+8 x^{2}+16 x-24 \\
& =x^{4}-3 x^{3}-5 x^{2}+31 x-24
\end{aligned}
$$

ACBSE Coaching for S(athematics and Science

$$
\text { 5. } \left.\begin{aligned}
& x^{2}-3 x+4 \begin{array}{l}
\frac{5 x+2}{5 x^{3}-13 x^{2}+15 x+7} \\
5 x^{3} \mp 15 x^{2} \pm 20 x
\end{array} \\
&=\frac{2 x^{2}-5 x+7}{2 x^{2}-6 x \pm 8} \\
&-2 x-1)
\end{aligned} \right\rvert\, \begin{aligned}
& \frac{\text { Terms of quotient }}{x^{3}}=5 x \text {-(1) } \\
& \frac{2 x^{2}}{x^{2}}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { (II) } x+1 \frac{x^{2}-x+1}{\frac{x^{3}}{3}+1} \quad \text { Termis of quoticants } \\
& \frac{x^{3} \pm x^{2}}{-x^{2}}+1 \quad \frac{x^{3}}{x}=x^{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. (1) } \frac{(x+1)(x-1),\left(x^{2}+1\right)}{\text { asing }(a+b)(a-b)=a^{2}-b^{2}} \\
& \text { (il) } \begin{aligned}
& (2 p-3)(2 p+3)\left(4 p^{2}+9\right) \\
= & \left(4 p^{2}-9\right)\left(4 p^{2}+9\right)
\end{aligned} \\
& =\left\{(x)^{2}-(1)^{2}\right\}\left(x^{2}+1\right) \\
& =\left\{x^{2}-1\right\}\left\{x^{2}+1\right\} \\
& =\left(4 \rho^{2}\right)^{2}-(9)^{2} \\
& =\left(x^{2}\right)^{2}-(1)^{2} \\
& =x^{4}-1
\end{aligned}
$$

JSUIIL TUTOBIAL
 ACBSE Coaching for OMathematics and Science

8. Given $x+\frac{t}{2}=4$. squaring 60th ades

$$
\begin{align*}
& \Rightarrow\left(x+\frac{1}{x}\right)^{2}=(4)^{2} \Rightarrow x^{2}+\frac{1}{x^{2}}+2 x \times \frac{1}{x}=16 \\
& \Rightarrow x^{2}+\frac{1}{x^{2}}=16-2=114-\text { Ans } \tag{Ans}\\
& \Rightarrow \text { Again squasing 60fe sedes } \\
& \left(\begin{array}{l}
\left.x^{2}+\frac{1}{x^{2}}\right)^{2}
\end{array}=(14)^{2}\right. \\
& x^{4}+\frac{1}{x^{4}}+2 \times x^{2} \times \frac{1}{x^{2}}=196 \\
& \left(x^{4}+\frac{1}{x^{4}}\right)=196-2=194
\end{align*}
$$

9. $(x-y)^{2}=(y)^{2} \quad \begin{array}{ll} & \Rightarrow x^{2}+y^{2}-2 x y=49 \\ & \Rightarrow x^{2}+y^{2}-2 x 9=49\end{array}$

$$
\Rightarrow x^{2}+y^{2}=49+18=67 \text {-Av. }
$$

(10) $\frac{(198)^{2}-(102)^{2}}{98}=\frac{(198-102)(198+102)}{96}=\frac{96 \times 300}{98}=300$ Ans

