JSINLL TITBIT ACBSE Coaching for OLathematics and Science

$7^{\text {th }}$ Mensuration Test Paper $\mathbf{- 0 2}$

3. A room is 8.5 m long, 6.5 m broad and 3.4 m high. It has two doors, each measuring 1.5 m by 1 m , and two windows, each measuring 2 m by 1 m . Find the cost of painting its four walls at Rs 4.60 per sq m .

4. The length and breadth of a rectangular land are in the ratio 2 : 3 if the total cost of fencing it at Rs 7.50 per m is Rs 3000 find the length and breadth.

5. A rectangular lawn 70 m by 50 m has two roads, each 5 m wide, running through its middle one parallel to its length and the other parallel to its breadth. Find the cost of constructing the road at Rs 20 per meter?

$350+250-25$
$\frac{\sec -5}{4 \operatorname{4ns} \sum^{2}}$
$600-23$
$52 \mathrm{sm}^{2}$
test of gravelling $=525 \times 20$
$=211500 . \sin { }^{\circ}$
6. A 115 m Long and 64 m broad lawn has two roads, at right angles, one 2 m running parallel to its length and other 2.5 m running parallel breadth. Find the cost of gravelling the road at 4.60per meter.

Area of road Parallel to length $=115 \times 2=230 \mathrm{~m} 2$
Area of road Parallel to breadth $=64 \times 2.5=160 \mathrm{~m} 2$
Area Of cross section of two road $=2 \times 2.5=5 \mathrm{~m} 2$
Area of cross roads $=230+160-5=390-5=385$
Cost of gravelling cross road of at 60 per $\mathrm{m}^{2}=385 \mathrm{x}$
$4.60=$ Rs. 1771

JSINL THIOBIL ACBSE Coaching for OKathematics and Science

7. Find the length of the altitude of an equilateral triangle of side 24 cm .
the length of the altitude of an equilateral triangle $=$
$\frac{\sqrt{3}}{2} a=\frac{\sqrt{3}}{2} \times 24=12 \sqrt{3} \mathrm{~cm}$
8. The area of an equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$. Find the length of each side.

Ara of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}=16 \sqrt{ } 3$

$$
=>a^{2}=\frac{16 \sqrt{3} \times 4}{\sqrt{3}}=64=>a=\sqrt{64}=8
$$

9. The base of an isosceles A is 48 cm . and one of its equal side 30 cm . Find area of triangle

9.	Rase of swales $X=48 \mathrm{~cm}$ ard two sides
are $=30$ and 30	
	Semi side $=\frac{30+30+48}{2} \cdot \frac{108}{2}=54 \mathrm{~cm}$
	Area $=\sqrt{s(s-0)(s-b)(s-c)}$

$=\sqrt{54(54-30)(54-30)(54.48)}$
$=\sqrt{54 \times 24 \times 24 \times 6}$
$=\sqrt{2 \times 3 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 2 \times 3}$
$=\sqrt{2 \times 2 \times 12 \times 2 \times 3 \times 3 \times 3}$
$=486$ Ans:
10. The side of a triangle are $42 \mathrm{~cm}, 34 \mathrm{~cm}$, and 20 cm . Calculate the area and the length of the altitude on the longest side.

90. Semi side \begin{tabular}{rl}
Area \& $=\frac{42+34+20}{2}=\sqrt{8(s-0)(s-b)(s-c)}$

\& $=\sqrt{48}=48 \mathrm{~cm}$

\& $=$| 2 | |
| ---: | :--- |
| | $=\sqrt{48 \times 6 \times 12)(48-34)(48-20)}$ |
| | $=2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 3 \times 2 \times 7 \times 7 \times 12 \times 2$ |
| | $=2 \times 2 \times 3 \times 2 \times 7 \times 2$ |
| | $=336$ |

\end{tabular}

11. The area of a triangle is 48 cm 2 . If a side and the corresponding altitude are in the ratio $3: 2$, find their lengths.

12. A person walks at $3 \mathrm{~km} / \mathrm{hr}$. How long will he take to go round a square ground 5 times, the area of which being $2025 \mathrm{~m}^{2}$?

JSINLL THIOBIL ACBSE Coaching for Olathematics and Science

	$\tau=\frac{0 / 9^{3} / \mathrm{kmo}}{-2 \mathrm{~km} / \mathrm{hx} 10 \cdot} \cdot \frac{3}{10} \times 10^{6}=18 \mathrm{~min}$
$\tau=18$ mix. Ama.	

13. The area of a square plot is $1764 \mathrm{~m}^{2}$. Find the length of its one side and one diagonal
14. | Area of $s q=a^{2}$ | |
| ---: | :--- |
| 1764 | $=0^{2}$ |
| $\sqrt{1764}$ | $=a$ |
| 42 | $=a$ |
| Ore side | $=42 \quad$ Ane |
| pea Dragonet | $=\frac{1}{2} \times d^{2}$ |
| $1764 \times 2=d^{2}$ | |
| 3528 | $=d$ |
| $42 \times 42 \times 2$ | $=d$ |
| $42 \sqrt{2}$ | $=d$ |
| one diagonal | $=42 \sqrt{2}$ As |
15. If the area of a circle is $78.5 \mathrm{~cm}^{2}$, find its circumference. (Take $\pi=3.14$)

JSUNIL THIDIM:
 ACBSE Coaching for OKathematics and Science

17. From a square cardboard, a circle of biggest area was cut out. If the area of the circle is 154 cm 2 , calculate the original area of the cardboard.

Area of circle $=\pi \mathrm{r}^{2}=154 \mathrm{~cm}^{2}=>\frac{22}{7} \times r^{2}=154$
$\Rightarrow \frac{154 \times 7}{22}=49=>r=\sqrt{49}=7 \mathrm{~cm}$
Side of square $=$ Dimeter of circle $=2 \times 7=14 \mathrm{~cm}$ The original area of the cardboard $=14 \times 14=196 \mathrm{~cm}^{2}$ 18. A bucket is raised from a well by means of a rope which is wound round a wheel of diameter 77 cm .
Giver the bucket ascents in 1 minute 28 seconds with a uniform speed of $1.1 \mathrm{~m} / \mathrm{sec}$. calculate the number of revolution the wheel makes in raising the bucket.
Dimeter of wheel $=77 \mathrm{~cm}$
Circumference of wheel $=\pi \mathrm{d}$

$$
\begin{aligned}
& \Rightarrow \quad 22 / 7 \times 77=242 \mathrm{~cm}=2.42 \mathrm{~m} \\
& \Rightarrow \quad \text { Rate of pulling rope }=1.1 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \quad \text { Time }=1 \mathrm{~min} 28 \mathrm{sec}=88 \mathrm{sec} . \\
& \Rightarrow \quad \text { Length of rope pulled in } 88 \mathrm{sec}=1.1 \times 88= \\
& \quad 96.8 \mathrm{~m} \\
& \Rightarrow \text { the number of revolution the wheel }=\frac{96.8}{2.42}=40
\end{aligned}
$$

19. A road 3.5 m wide surrounds a circular park whose circumference is 44 m . find the cost of paving road at the rate of Rs. 60 per square meter.

circumference of circular park $=2 \pi r=44 \mathrm{~m}$
$2 \times \frac{22}{7} \times r=88=>r=\frac{44 \times 7}{2 \times 22}=7 \mathrm{~cm}$
Thickness of road $=3.5 \mathrm{~m}$ wide surrounds
$R=r+3.5=14+3.5=10.5 \mathrm{~cm}$
Area of the road $=\pi R^{2}-\pi r^{2}=\frac{22}{7}\left(10.5^{2}-7^{2}\right)$
$=\frac{22}{7} x(110.25-49)=\frac{22}{7} \times 61.5=192.5 \mathrm{~m}^{2}$
Cost of paving the road $=$ Rs. 50 per sq m
Total cost of paving the road $=192.5 \times 50$
Total cost = Rs. 9625
20. $A B C D$ is a diameter of a circle of radius 6 cm such that $A B=B C=C D$. Semicircles are drawn on $A B$ and $B D$ as diameters, as shown in the given figure. Find the area of the shaded region.

$A B C D$ is a diameter of a circle of radius 6 cm
$\Rightarrow D=6 \times 2=12 \mathrm{~cm}$
Given, $A B=B C=C D=\frac{12}{3}=4$
Area of semicircle with dimeter $\mathrm{AB}=\pi\left(\frac{A B}{2}\right)^{2}$

$$
=\pi\left(\frac{4}{2}\right)^{2}=4 \pi
$$

Area of semicircle with dimeter $\mathrm{AD}=\pi\left(\frac{A D}{2}\right)^{2}$

$$
=\pi\left(\frac{12}{2}\right)^{2}=36 \pi
$$

Area of semicircle with dimeter $\mathrm{BD}=\pi\left(\frac{A B}{2}\right)^{2}$ $=\pi\left(\frac{8}{2}\right)^{2}=16 \pi$
The area of the shaded region $=36 \pi+4 \pi$ $16 \pi=24 \pi \mathrm{~cm} 2$

JSITIL THORIML $A C B S E$ Coaching for OKathematics and Science

21. In the given figure, a circle of diameter 21 cm is given. Inside this circle, two circles with diameters $\frac{2}{3}$ and $\frac{1}{3}$ of the diameter of the big circle have. Find the area of shaded region.

Diameter of circle $=A D=21 \mathrm{~cm}$
Diameters AP $=21 \times \frac{2}{3}=14 \mathrm{~cm}$
Diameters DP $=21 \times \frac{1}{3}=7 \mathrm{~cm}$
Area of circle with dimeter 21 cm
$=\pi\left(\frac{21}{2}\right)^{2}=\frac{441 \pi}{4}$
Area of circle with dimeter 14 cm
$=\pi\left(\frac{14}{2}\right)^{2}=\frac{196 \pi}{4}$
Area of circle with dimeter cm
$=\pi\left(\frac{7}{2}\right)^{2}=\frac{49 \pi}{4}$
the area of shaded region

$$
\begin{aligned}
& =\frac{441 \pi}{4}-\left(\frac{196 \pi}{4}-\frac{49 \pi}{4}\right) \\
& =\frac{441 \pi-245 \pi}{4}=\frac{196 \pi}{4} \\
& =49 \pi=49 \times \frac{22}{7}=7 \times 22=154 \mathrm{~cm}^{2}
\end{aligned}
$$

22. The diameter of the wheel of a car is 77 cm . How many revolutions will it make to travel 121 km ?

Diameter of the wheel of a car $=77$
circumference of the wheel of a car = $\pi \mathrm{d}=22 / 7 \times 77=22 \times 11$

$$
=242 \mathrm{~cm}=2.42 \mathrm{~m}
$$

Total distance $=121 \mathrm{~km}=121000 \mathrm{~m}$

No. of revolutions $=\frac{121000}{2.42}=50,000$
23. A road which is 7 m wide surrounds a circular park whose circumference is 352 m . Find the area of road.

Solution:
We have:
Circumference of the circular park
$=2 \pi r=352 \mathrm{~m}$
=> $2 \pi r=352$
=> $2 \times 227 \times r=352$
$=>r=56 \mathrm{~m}$.
Radius of the path including the 7 m wide road $=(r+7)=56+7=63 \mathrm{~m}$.
\therefore Area of the road:
$=\pi \times(63) 2-\pi \times(56) 2$
$=227 \times 63 \times 63-227 \times 56 \times 56$
$=22[9 \times 63-8 \times 56]$
$=22[567-448]$
$=2618 \mathrm{~m}^{2}$
\therefore Area of the road $=2618 \mathrm{~m}^{2}$

