PH: 9835859669

CLASS: X TOPIC: POLYNOMIALS

SUBJECT: MATHEMATICS

- 1. Show that $x^2 3$ is a factor of $2x^4 + 3x^3 2x^2 9x 12$
- 2. Divide: $4x^3 + 2x^2 + 5x 6$ by $2x^2 + 3x + 1$ (2x-2, 9x-4)
- 3. Find other zeroes of the polynomial $p(x) = 2x^4 + 7x^3 19x^2 14x + 30$ if two of its zeroes are $\sqrt{2}$ and $\sqrt{2}$ (3/2, -5)
- 4. Find all the zeroes of the polynomial $3x^4 + 6x^3 2x^2 10x 5$, if two of its zeroes are $\sqrt{5}/3$ and $-\sqrt{5}/3$ (-1,-1)
- 5. Find all the zeroes of $2x^4 3x^3 3x^2 + 6x 2$, if it is known that two of its zeroes are $\sqrt{2}$ and $\sqrt{2}$ (1, $\frac{1}{2}$)
- 6. If the polynomial $f(x) = x^4 6x^3 + 16x^2 25x + 10$, is divided by another polynomial $x^2 2x + k$ the remainder Comes out to be x + a, find k and a (k = 5, a = -5)
- 7. Find the polynomial, whose zeroes are $2 + \sqrt{3}$ and $2 \sqrt{3}$ $(x^2 4x + 1)$
- 8. Form a quadratic polynomial, one of whose zero is 2 + $\sqrt{5}$ and the sum of zeroes is 4
- 9. If α and β are zeroes of the polynomial $x^2 2x 15$, then form a quadratic polynomial whose zeroes are 2α and 2β
- 10. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2 $(x^2 3x 2)$
- 11. Find the zeroes of the polynomial and verify the relationship between the zeroes and the coefficient
 - a) $4x^2 4x + 1$
- b) x² 3
- c) $\sqrt{3}x^2 8x + 4\sqrt{3}$
- 12. If α and β are the zeroes of the polynomial $2y^2 + 7y + 5$, write the value of $\alpha + \beta + \alpha\beta$ (-1)
- 13. If one root of the polynomial $5x^3 + 13x + k$ is reciprocal of the other, then find the value of k?
- 14. What must be subtracted from $2x^4 11x^3 + 29x^2 40x + 29$, so that the resulting polynomial is exactly divisible By x^2-3x+4 (-2x + 5)
- 15. If the polynomial $6x^4 + 8x^3 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 5$, then find the values of a and b (-20, -25)
- 16. If the zeroes of the polynomial $x^3 3x^2 + x + 1$ are a b, a + b, find a and b (1, $\pm \sqrt{2}$)
- 17. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively Find g(x) $(x^2 x + 1)$
- 18. If α and β are the zeroes of the polynomial f(x) = $6x^2 + x 2$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \alpha\beta$ (5/6)

(8/15)

- 19.If α and β are the zeroes of the quadratic polynomial $2x^2 + 3x 5$, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ (-3/5)
- 20. If α and β are the zeroes of the polynomial $f(x) = x^2 5x + k$ such that $\alpha \beta = 1$, find k (6)
- 21. If the product of zeroes of the polynomial $ax^2 6x 6$ is 4, find the value of a (-3/2)
- 22.If α,β are the zeroes of quadratic polynomial $2x^2 + 5x + k$, find the value of k such that $(\alpha + \beta)^2 \alpha\beta = 24$