1. Show that $x^{2}-3$ is a factor of $2 x^{4}+3 x^{3}-2 x^{2}-9 x-12$
2. Divide: $4 x^{3}+2 x^{2}+5 x-6$ by $2 x^{2}+3 x+1$
3. Find other zeroes of the polynomial $p(x)=2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$ if two of its zeroes are $\sqrt{ } 2$ and $-\sqrt{ } 2$
4. Find all the zeroes of the polynomial $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{5} / 3$ and $-\sqrt{5} / 3$
5. Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if it is known that two of its zeroes are $\sqrt{ } 2$ and $-\sqrt{ } 2$
6. If the polynomial $f(x)=x^{4}-6 x^{3}+16 x^{2}-25 x+10$, is divided by another polynomial $x^{2}-2 x+k$ the remainder Comes out to be $x+a$, find k and a
7. Find the polynomial, whose zeroes are $2+\sqrt{ } 3$ and $2-\sqrt{ } 3$
8.Form a quadratic polynomial, one of whose zero is $2+\mathrm{V} 5$ and the sum of zeroes is 4
8. If α and β are zeroes of the polynomial $x^{2}-2 x-15$, then form a quadratic polynomial whose zeroes are 2α and 2β
10.Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2
$\left(x^{2}-3 x-2\right)$
9. Find the zeroes of the polynomial and verify the relationship between the zeroes and the coefficient
a) $4 x^{2}-4 x+1$
b) $x^{2}-3$
c) $\sqrt{3} x^{2}-8 x+4 \sqrt{ } 3$
10. If α and β are the zeroes of the polynomial $2 y^{2}+7 y+5$, write the value of $\alpha+\beta+\alpha \beta$
11. If one root of the polynomial $5 x^{3}+13 x+k$ is reciprocal of the other, then find the value of k ?
12. What must be subtracted from $2 x^{4}-11 x^{3}+29 x^{2}-40 x+29$, so that the resulting polynomial is exactly divisible By $x^{2}-3 x+4$
13. If the polynomial $6 x^{4}+8 x^{3}-5 x^{2}+a x+b$ is exactly divisible by the polynomial $2 x^{2}-5$, then find the values of a and b
14. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b
15. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively Find $g(x)$
16. If α and β are the zeroes of the polynomial $f(x)=6 x^{2}+x-2$, find the value of $1+\ldots-\alpha \beta$
19.If α and β are the zeroes of the quadratic polynomial $2 x^{2}+3 x-5$, find the value of

17. If α and β are the zeroes of the polynomial $f(x)=x^{2}-5 x+k$ such that $\alpha-\beta=1$, find k
18. If the product of zeroes of the polynomial $a x^{2}-6 x-6$ is 4 , find the value of a
22.If α, β are the zeroes of quadratic polynomial $2 x^{2}+5 x+k$, find the value of k such that $(\alpha+\beta)^{2}-\alpha \beta=24$
