JSUNILTUTORIAL

Tangent to a circle X
 Test paper - 4

1. In the figure, $A B C$ is an isosceles triangle in which $A B=A C$. A circle through B Touches the side $A C$ at D and intersects the side $A B$ at P. If D is the midpoint of side $A C$, Then $A B=4 A P$

For Q1 \rightarrow

for Q 2 \rightarrow

for Q3.
2. If a line is drawn through an end point of a chord of a circle so that the angle formed by it with the Chord is equal to the angle subtend by chord in the alternate Segment, and then the line is a tangent to the circle.
3. In the given figure TAS is a tangent to the circle, with centre O , at the point A . If $\angle \mathrm{OBA}$, find the value of x and y .

For Q4

for Q 7.

for Q 8
4. in the given figure. $\angle C$ is right angle of $\triangle A B C$. A semicircle is drawn on $A B$ as diameter. P is any point on $A C$ produced. When joined, BP meets the semi-circle in point D. Prove that: $A B 2=A C . A P+B D . B P$.
5. Two circles intersect at A and B. From a point P on one of these circles, two lines segments PAC and PBD are drawn intersecting the other circles at C and D respectively. Prove that $C D$ is parallel to the tangent at P.
6. Two circles intersect in points P and Q. A secant passing through P intersects the circles at A an B respectively. Tangents to the circles at A and B intersect at T. Prove that A, Q, T and B are concyclic.
7. In the given figure. $P T$ is a tangent and $P A B$ is a secant to a circle. If the bisector of $<A T B$ intersect $A B$ in M, Prove that: (i) $\angle \mathrm{PMT}=\angle \mathrm{PTM}$ (ii) PT $=\mathrm{PM}$
8. In the adjoining figure, $A B C D$ is a cyclic quadrilateral. $A C$ is a diameter of the circle. MN is tangent to the circle at $\mathrm{D}, \angle \mathrm{CAD}=40$ and $\angle \mathrm{ACB}=55$. Determine $<$ ADM and $\angle \mathrm{BAD}$
10. A circle is drawn with diameter $A B$ interacting the hypotenuse $A C$ of right triangle $A B C$ at the point P. Show that the tangent to the circle at P bisects the side $B C$.

File downloaded from http://jsuniltutorial.weebly.com

