JSM1/

ACBSE Coaching for OKathematics and Science

Class-10 ${ }^{\text {th }}(\mathbf{X})$ Mathematics Chapter: Tangents to Circles

1. $\mathrm{Q} . \mathrm{AB}$ is line segment of length $24 \mathrm{~cm} . \mathrm{C}$ is its midpoint. $\mathrm{On} A B, A C$ and $B C$ semicircles are described. Find the radius of the circle which touches all the three semicircles

Solution: Let the required radius be r cm .
$\mathrm{O}_{1} \mathrm{O}_{3}=$ Radius of smaller semicircle $+\mathrm{r}=24 / 4+\mathrm{r}=6+\mathrm{r}$
$\mathrm{O}_{1} \mathrm{C}=$ Radius of smaller semicircle $=24 / 4=6 \mathrm{~cm}$
In right triangle $\mathrm{O}_{1} \mathrm{O}_{3} \mathrm{C}$:
$\mathrm{O}_{1} \mathrm{O}_{3}{ }^{2}=\mathrm{O}_{1} \mathrm{C}^{2}+\mathrm{O}_{3} \mathrm{C}^{2}$
or $\mathrm{O}_{3} \mathrm{C}^{2}=\mathrm{O}_{1} \mathrm{O}_{3}{ }^{2}-\mathrm{O}_{1} \mathrm{C}^{2}$
$=36+\mathrm{r}^{2}+12 \mathrm{r}-36$
$=r^{2}+12 r$
or $\mathrm{O}_{3} \mathrm{C}=\left(\mathrm{r}^{2}+12 \mathrm{r}\right)^{1 / 2}$
Also,
$\mathrm{DC}=\mathrm{DO}_{3}+\mathrm{O}_{3} \mathrm{C}$
or $24 / 2=12=r+\left(r^{2}+12 r\right)^{1 / 2}$

or $12-r=\left(r^{2}+12 r\right)^{1 / 2}$
Squaring both sides
$144+r^{2}-24 r=r^{2}+12 r$
or $36 \mathrm{r}=144$
or $r=144 / 36=4$
Hence, radius of the circle which touches all three semicircles is 4 cm .
2. Q . M is any point on the minor arc BC of circumcircle of an equilateral triangle ABC . Prove that $\mathrm{AM}=\mathrm{BM}+\mathrm{CM}$.

Solution:
Given, $\triangle \mathrm{ABC}$ is an equilateral triangle.
$\Rightarrow \mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
Construction : Extend BM to point D. Such that DM $=$ CM.
To Prove : $\mathrm{AM}=\mathrm{BM}+\mathrm{CM}$
Proof: $\triangle \mathrm{ABC}$ is an equilateral triangle.
$\Rightarrow \angle A=\angle B=\angle C=60^{\circ}$ and $A B=B C=A C$
Now, ABCM is a cyclic quadrilateral.
$\Rightarrow \angle \mathrm{BAC}+\angle \mathrm{BMC}=180^{\circ}$
[opposite angles of a cyclic quadrili
$\Rightarrow \angle B M C=180^{\circ}-60^{\circ}=120^{\circ}$
Now, $\angle B M C+\angle C M D=180^{\circ}$
[Linear pair]
$\Rightarrow \angle C M D=180^{\circ}-120^{\circ}=60^{\circ}$
$\Rightarrow \angle \mathrm{BAC}=\angle \mathrm{CMD}=60^{\circ}$
Also, $\angle \mathrm{MDC}=\angle \mathrm{MCD}$ [Angles opposite to equal sides CM and DM are equal]
$\therefore \triangle \mathrm{CMD}$ is an equilateral triangle.
Now, In $\triangle \mathrm{AMC}$ and BDC, we have

ACBSE Coaching for Ofathematics and Science

$\mathrm{AC}=\mathrm{BC}$
$\angle \mathrm{CAM}=\angle \mathrm{CBD}$ [Angles in the same segment of a circle are equal]
$\angle A B C=\angle A M C=\angle B D C=60^{\circ}[\angle A B C$ and $\angle A M C$ lies in the same segment of a circle and are equal to each other]
$\Rightarrow \triangle \mathrm{AMC} \cong \triangle \mathrm{BDC}$
$\Rightarrow \mathrm{AM}=\mathrm{BD}$
[ASA]
[C.P.C.T]
$\Rightarrow \mathrm{AM}=\mathrm{BM}+\mathrm{CM}$
[As $\mathrm{CM}=\mathrm{DM}$]
[Hence Proved]
3. Q . The length of a common internal tangent of two circles is 7 and a common external tangent is 11 . Compute the product of the radii of two circles.
he length of common external tangent is 11 units. We can draw it as follows :

Let d be the distance of the centres of the circle. Let a be the radius of large circle and b be the radius of smaller circle.
From O^{\prime}, draw a line parallel to AB which meets OA and C .
$\therefore \angle O^{\prime} \mathrm{CO}=90^{\circ}$ and $\mathrm{OC}=a-b \quad\left[\because O^{\prime} \mathrm{C} 11 \mathrm{AB}\right.$ and $\left.\angle \mathrm{CAB}=90^{\circ}\right]$
In Right angled $\triangle \mathrm{OCO}$ ', we have -
$\left(O^{\prime} C\right)^{2}+(O C)^{2}=\left(O O^{\prime}\right)^{2}$
$\Rightarrow d^{2}=(a-b)^{2}+(11)^{2}$
$\Rightarrow 11^{2}=d^{2}-(a-b)^{2}$
$\Rightarrow 121=d^{2}-a^{2}-b^{2}+2 a b \quad \ldots \quad$ (1)
Again, the length of common internal tangent to these two circles is 7 units. We can draw it as -

Here $\mathrm{PQ}=7$ units is the length of common internal tangent.
Draw a line O'R parallel to PQ so that it makes a right angled triangle OO'R with
$\mathrm{OR}=\mathrm{OP}+\mathrm{PR}=a+b$ units
$\mathrm{O}^{\prime} \mathrm{R}=\mathrm{PQ}=7$ units
and $\mathrm{OO}^{\prime}=d$ units
By Pythagoras theorem,
$7^{2}+(a+b)^{2}=d^{2}$
$\Rightarrow 49=d^{2}-a^{2}-b^{2}-2 a b$
subtracting (2) from (1) we get -
$121-49=4 a b$
$\Rightarrow 4 a b=72$
$\Rightarrow a b=18$ square units
Hence the product of radius of two circles is 18 square units.
4. Q. If from any point on the common chord of two intersecting circles, tangents be drawn to the circle, prove that they are equal.

Let PT be a tangent to the circle from an external point P and a secant to the circle through P intersects the circle at points A and B, then $\mathbf{P T}^{\mathbf{2}}=\mathbf{P A} \times \mathbf{P B}$
This property is used to solve the given question.

Let the two circles intersect at points X and Y . XY is the common chord.
Suppose A is a point on the common chord and AM and AN be the tangents drawn from A to the circle.
AM is the tangent and AXY is a secant.
$\therefore \mathrm{AM}^{2}=\mathrm{AX} \times \mathrm{AY}$
AN is the tangent and $A X Y$ is a secant.
$\therefore \mathrm{AN}^{2}=\mathrm{AX} \times \mathrm{AY}$
From (1) and (2), we have
$\mathrm{AM}^{2}=\mathrm{AN}^{2}$
$\therefore \mathrm{AM}=\mathrm{AN}$
5. Q. If two tangents inclined at an angle of 60 are drawn to circle of radius 13 cm , Find length of each tangent

Solution: Let PA and PB be two tangents to a circle with centre O and radius 13 cm .

We are given $\angle \mathrm{APB}=60^{\circ}$
We know that two tangents drawn to a circle from an external point are equally inclined to the segment joining the centre to the point.
$\therefore \angle \mathrm{APO}=\angle \mathrm{BPO}=\frac{1}{2} \times \angle \mathrm{APB}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
Also, $\mathrm{OA} \perp \mathrm{AP}$ and $\mathrm{OB} \perp \mathrm{BP}$ (radius \perp tangent at point of contact)

In right $\triangle \mathrm{OAP}$,
$\tan 30^{\circ}=\frac{13}{P A}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{13}{P A}$
$\Rightarrow P A=13 \sqrt{3} \mathrm{~cm}$
$\therefore \mathrm{PA}=\mathrm{PB}=13 \sqrt{3} \mathrm{cr}$ (Lengths of tangents drawn from an external point to the circle are equal)
6. Q. PAQ is a tanget to a circle of centre O . a triangle is inscribed in circle ABC . if angle OBA is $36^{\circ} 0$ and angle C is θ then Find measure of θ.

Solution:
Given, PAQ is the tangent to the circle. $\angle \mathrm{OBA}=36^{\circ}$ and $\angle \mathrm{ACB}=\theta$.

JSTITL THिता:

ACBSE Coaching for OKathematics and Science

In $\triangle \mathrm{OAB}$,
$\mathrm{OA}=\mathrm{OB}$ (Radius of the circle)
$\Rightarrow \angle \mathrm{OBA}=\angle \mathrm{OAB}$ (Equal sides have equal angles opposite to them)
$\Rightarrow \angle \mathrm{OAB}=36^{\circ}$
$\angle \mathrm{OAB}+\angle \mathrm{AOB}+\angle \mathrm{OBA}=180^{\circ}$ (Angle sum property)
$\Rightarrow 36^{\circ}+\angle \mathrm{AOB}+36^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=180^{\circ}-72^{\circ}=108^{\circ}$
We know that, the angle subtended by an arc of a circle at the centre is double the angle
subtended by it at any point on the remaining part of the circle.
$\therefore \angle \mathrm{AOB}=2 \angle \mathrm{ACB}$
$\Rightarrow 2 \angle \mathrm{ACB}=108^{\circ}$
$\Rightarrow \angle \mathrm{ACB}=54^{\circ}$
Hence, the value of θ is 54°
7. Q . Two tangents BC and BD are drawn to a circle with centre ' O ' such that angle $\mathrm{DBC}=120^{\circ}$. Prove that $\mathrm{BO}=2 \mathrm{BC}$

It can be clearly show that OB bisects $\angle \mathrm{DBC}$.
$\therefore \angle \mathrm{OBC}=\angle \mathrm{OBD}=60$
In $\triangle \mathrm{OBC}$,
$\angle \mathrm{OBC}=60, \angle \mathrm{OCB}=90$
$\angle \mathrm{COB}+\angle \mathrm{OBC}+\angle \mathrm{OCB}=180$ [Angle sum property of triangle]
$\angle \mathrm{COB}+60+90=180$
$\angle \mathrm{COB}=180-150=30$
$\sin (\angle \mathrm{COB})=\frac{\mathrm{BC}}{\mathrm{BO}}$
$\sin 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{BO}}$
$\frac{1}{2}=\frac{\mathrm{BC}}{\mathrm{BO}}$

$\mathrm{BO}=2 \mathrm{BC}$
8. Q. two concentric circle has been drawn with centre o a right angled triangle inside the circle in such a way that hypotenuse touches the smaller circle as a tangent of of smaller circle and perpendicular is drawn as the radius of bigger circle and the base is also the radius of bigger circle find the radius of smaller circle

According to Question,
$\mathrm{AB}=$ hypotenuse of the right angled triangle
AB touches the smaller circle $\left(\mathrm{C}_{2}\right)$ as a tangent and $\mathrm{OA}=\mathrm{OB}=\mathrm{R}$
(radius of bigger circle)
$\Rightarrow(A B)^{2}=R^{2}+R^{2}+=2 R^{2}$
$\Rightarrow A B=\sqrt{2} R$
As $A B$ is a chord of circle C_{1} and O is centre.
So $\mathrm{OP} \perp \mathrm{AB}$ and P will bisect AB

$\therefore \mathrm{BP}=\mathrm{AP}=\frac{\sqrt{2} \mathrm{R}}{2}=\frac{\mathrm{R}}{\sqrt{2}}$

Now, OBD is a right angled triangle
$\therefore(\mathrm{OP})^{2}=(\mathrm{BO})^{2}-(\mathrm{BP})^{2}$
$\Rightarrow(\mathrm{OP})^{2}=\mathrm{R}^{2}-\frac{\mathrm{R}^{2}}{2}=\frac{\mathrm{R}^{2}}{2}$
$\Rightarrow O P=\frac{R}{\sqrt{2}}$
Hence, Radius of smaller circle should by $1 / \sqrt{ } 2$ times the radius of circle.
9. Q.Two concentric circles with centre O are of radii 6 cm and 3 cm respectively.From an external point P , tangents PA and PB are drawn to these circles.If $\mathrm{PA}=10 \mathrm{~cm}$, find PB .

Given: Two concentric circles with radius O and radius O and radii cm and 3 cm .

$\Rightarrow \mathrm{OA}=6 \mathrm{~cm}$ and $\mathrm{OB}=3 \mathrm{~cm}$
Also PA and PB are tangents to two circles such that $\mathrm{PA}=10 \mathrm{~cm}$
Now, the known that radius of a circle is perpendicular to the tangent at the point of center.
$\Rightarrow \mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
In right $\triangle \mathrm{OAP}$
$\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{AP}^{2}$ (Pythagoras theorem)
$\Rightarrow \mathrm{OP}^{2}=(6 \mathrm{~cm})^{2}+(10 \mathrm{~cm})^{2}=36 \mathrm{~cm}^{2}+100 \mathrm{~cm}^{2}=136 \mathrm{~cm}^{2}$
In right $\triangle \mathrm{OBP}$
$\mathrm{OP}^{2}=\mathrm{OB}^{2}+\mathrm{PB}^{2}$
$\Rightarrow \mathrm{PB}^{2}=\mathrm{OP}^{2}-\mathrm{OB}^{2}=136 \mathrm{~cm}^{2}-(3 \mathrm{~cm})^{2}=136 \mathrm{~cm}^{2}-9 \mathrm{~cm}^{2}=127 \mathrm{~cm}^{2}$
$\mathrm{PB}=\sqrt{127} \mathrm{~cm}$
10.Q. LT is a straight line of 6 cm . S is the mid-point. Semi-circles are drawn on LT, TS and LS as diameter. Such circle is drawn which touches this three semi-circles. Prove that the radius of this circle is 1 cm .

Let the radius of the circle be $r \mathrm{~cm}$.
$\mathrm{LS}=\mathrm{ST}=3 \mathrm{~cm}$.
$\mathrm{SP}=\mathrm{OS}=\frac{3}{2} \mathrm{~cm}$
$\mathrm{QS}=(3-r) \mathrm{cm}$.
$\mathrm{OQ}=\left(r+\frac{3}{2}\right) \mathrm{cm}$
In right $\triangle \mathrm{OQS}$,
$\mathrm{OQ}^{2}=\mathrm{OS}^{2}+\mathrm{QS}^{2}$

$$
\begin{aligned}
& \therefore\left(r+\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}+(3-r)^{2} \\
& \Rightarrow r^{2}+3 r+\frac{9}{4}=\frac{9}{4}+9+r^{2}-6 r \\
& \Rightarrow 9 r=9 \\
& \Rightarrow r=1
\end{aligned}
$$

Thus, the radius of the circle is 1 cm .
11. Q. Two circles whose centres are A and B touches each other at point P. A line CD is drawn which passing through point P , which meets its circumference at C and D . Then prove that : AC is paralel to BD .

Given: Two circles with centre A and B touches at P and $C D$ passing through P In $\triangle \mathrm{ACP}$
$\mathrm{AC}=\mathrm{AP}$ (radius)
$\Rightarrow \angle \mathrm{APC}=\angle \mathrm{ACP}$ (Angles opposite to equal sides)
In $\triangle \mathrm{BDP}$
$\mathrm{BD}=\mathrm{BP}$ (radius)
$\Rightarrow \angle \mathrm{BPD}=\angle \mathrm{BDP} \ldots$.. (2)

But
$\angle \mathrm{APC}=\angle \mathrm{BPD}$ (Vertically opposite angles) ... (3)
Now AC and DB are two lines and AB is the transversal such that $\angle \mathrm{ACP}=\angle \mathrm{BPD}$ (from (1), (2) and (3))
Hence AC || BD
12. Q . If $\mathbf{P A B}$ is a secant to a circle intersecting the circle to \mathbf{A} and \mathbf{B} and $\mathbf{P T}$ is a tangent, then proove that :-

$\mathbf{P A} * \mathbf{P B}=\mathbf{P T}^{2}$

JSM1/1
 ACBSE Coaching for OCathematics and Science

Given: A secant $P A B$ to a circle $C(O, r)$ intersect it in A and B and PT is a tangent.
To prove: $\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$
Construction: Draw $O D \perp A B$. Join $O P, O T$ and $O A$.
Proof:
Since, $O D \perp A B$
$\therefore \mathrm{AD}=\mathrm{DB} \quad \ldots(1) \quad$ (Perpendicular from the centre to the chord bisects the chord)
$P A \times P B=(P D-A D)(P D+B D)$
$=(P D-A D)(P D+A D)[$ Using (1)]
$=P D^{2}-A D^{2}$
In right $\triangle \mathrm{OPD}$,
$O P^{2}=O D^{2}+P D^{2}$
$\Rightarrow P D^{2}=O P^{2}-O D^{2}$
$\therefore P A \times P B=\left(O P^{2}-O D^{2}\right)-A D^{2}=O P^{2}-\left(O D^{2}+A D^{2}\right)$
In right $\triangle O A D$,
$O A^{2}=O D^{2}+A D^{2}$
$\therefore \mathrm{PA} \times \mathrm{PB}=O \mathrm{O}^{2}-O A^{2}=\mathrm{OP}^{2}-\mathrm{OT}^{2} \quad(\because \mathrm{OA}=\mathrm{OT})$
In \triangle OPT,
$\mathrm{OP}^{2}=\mathrm{PT}^{2}+\mathrm{OT}^{2}$
$\Rightarrow \mathrm{OP}^{2}-\mathrm{OT}^{2}=\mathrm{PT}^{2}$
$\therefore \mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$
13. $\mathrm{Q} . \mathrm{AB}$ is a diameter and AC is the cord of a circle such that angle $\mathrm{BAC}=30^{\circ}$. if tangent at C intersects AB produced at D , prove that $\mathrm{BC}=\mathrm{BD}$

Given : A circle with AB as diameter having chord $\mathrm{AC} . \angle \mathrm{BAC}=30$
Tangent at C meets AB produced at D . To prove : $\mathrm{BC}=\mathrm{BD} \quad$ Construction : Join OC
Proof : In $\triangle \mathrm{AOC}$,
$\mathrm{OA}=\mathrm{OC}$ (radii of same circle)
$\Rightarrow \angle 1=\angle \mathrm{BAC}$ (angles opposite to equal sides are equal) $\Rightarrow \angle 1=30$
By angle sum property of Δ,
We have, $\angle 2=180-(30+30)=180-60=120$
Now, $\angle 2+\angle 3=180$ (linear pair) $\Rightarrow 120+\angle 3=180 \Rightarrow \angle 3=60$
$A B$ is diameter of the circle.
We know that angle in a semi circle is 90
$\Rightarrow \angle \mathrm{ACB}=90 \Rightarrow \angle 1+\angle 4=90 \Rightarrow 30+\angle 4=90 \Rightarrow \angle 4=60$
Consider OC is radius and CD is tangent to circle at C .
We have $\mathrm{OC} \perp \mathrm{CD} \Rightarrow \angle \mathrm{OCD}=90 \quad \Rightarrow \angle 4+\angle 5(=\angle \mathrm{BCD})=90 \quad \Rightarrow 60+\angle 5=90 \Rightarrow \angle 5=$
30
In $\triangle \mathrm{OCD}$, by angle sum property of Δ

JSM1/
 ACBSE Coaching for O(athematics and Science

$\angle 5+\angle \mathrm{OCD}+\angle 6=180 \Rightarrow 60+90+\angle 6=18 \Rightarrow \angle 6+15=180 \Rightarrow \angle 6=30$
In $\triangle \mathrm{BCD}, \angle 5=\angle 6(=30)$
$\Rightarrow \mathrm{BC}=\mathrm{CD}$ (sides opposite to equal angles are equal)
14. From a point P , two tangents PA and PB are drawn to a circle with centre O . If $\mathrm{OP}=$ diameter of the circle, show that the triangle APB is equilateral.

AP is the tangent to the circle.
$\therefore \mathrm{OA} \perp \mathrm{AP}$ (Radius is perpendicular to the tangent at the point of contact)
$\Rightarrow \angle \mathrm{OAP}=90^{\circ}$
In \triangle OAP,
$\sin \angle \mathrm{OPA}=\frac{\mathrm{OA}}{\mathrm{OP}}=\frac{r}{2 r} \quad[\mathrm{OP}=$ Diameter of the circle $]$
$\therefore \sin \angle O P A=\frac{1}{2}=\sin 30^{\circ}$
$\Rightarrow \angle O P A=30^{\circ}$
Similarly, it can be proved that $\angle O P B=30^{\circ}$.
Now, $\angle A P B=\angle O P A+\angle O P B=30^{\circ}+30^{\circ}=60^{\circ}$
In $\triangle \mathrm{PAB}$,
$\mathrm{PA}=\mathrm{PB}$ [lengths of tangents drawn from an external point to a circl
$\Rightarrow \angle P A B=\angle P B A \quad . . .(1) \quad$ [Equal sides have equal angles opposite to
$\angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ} \quad$ [Angle sum property]
$\Rightarrow \angle P A B+\angle P A B=180^{\circ}-60^{\circ}=120^{\circ} \quad[$ Using (1)]
$\Rightarrow 2 \angle \mathrm{PAB}=120^{\circ}$
$\Rightarrow \angle P A B=60^{\circ}$
From (1) and (2)
$\angle P A B=\angle P B A=\angle A P B=60^{\circ}$
$\therefore \triangle \mathrm{PAB}$ is an equilateral triangle.

