ysinn
 $\triangle C B S E$ Coaching for alcathematies and Science
 10th Chapter Number System CBSE Test Paper - 06

Q.1. Based on Euclid's algorithm: $\mathrm{a}=\mathrm{b} q+\mathrm{r}$; Using Euclid's algorithm: Find the HCF of 825 and 175.

Ans: Since $825>175$, we use division lemma to 825 and 175 to get $825=175 \times 4+125$.
Since $r \neq 0$, we apply division lemma to 175 and 125 to get $175=125 \times 1+50$
Again applying division lemma to 125 and 50 we get, $125=50 \times 2+25$.
Once again applying division lemma to 50 and 25 we get. $50=25 \times 2+0$.
Since remainder has now become 0, this implies that HCF of 825 and 125 is 25 .
Q.2. Based on Showing that every positive integer is either of the given forms: Prove that every odd positive integer is either of the form $4 q+1$ or $4 q+3$ for some integer q.

Ans: Let a be any odd positive integer (first line of problem) and let $b=4$. Using division Lemma we can write $a=b q+r$, for some integer q, where $0 \leq r<4$. So a can be $4 q, 4 q+1,4 q+2$ or $4 q+3$. But since a is odd, a cannot be $4 q$ or $4 q+2$. Therefore any odd integer is of the form $4 q+1$ or $4 q+3$.
Q. Find $\operatorname{HCF}(26,91)$ if $\operatorname{LCM}(26,91)$ is 182

Sol: We know that LCM x HCF = Product of numbers.
or $182 \times \mathrm{HCF}=26 \times 91$
or HCF $=26 \times 91=13$
Hence HCF $(26,91)=13$.
Q. Prove that $\sqrt{ } 5$ is irrational.
 IT

Solution: let us assume on the contrary that $\sqrt{ } 5$ is rational. That is we can find co-primes a and b b ($\neq 0)$ such that $\sqrt{5}=\mathrm{a} / \mathrm{b}$. \quad Or $\sqrt{5 b}=\mathrm{a}$.

Squaring both sides we get $5 b^{2}=a^{2}$.
This means 5 divides a^{2}. Hence it follows that 5 divides a.
So we can write $\mathrm{a}=5 \mathrm{c}$ for some integer c .
Putting this value of a we get, $\quad 5 b^{2}=(5 c)^{2} \quad$ Or $5 b^{2}=25 c^{2} \quad$ Or $b^{2}=5 b^{2}$.
It follows that 5 divides b^{2}. Hence 5 divides b.
Now a and b have at least 5 as a common factor.
But this contradicts the fact that a and b are co-primes.
This contradiction has arisen because of our incorrect assumption that $\sqrt{ } 5$ is rational. Hence it follows that $\sqrt{ } 5$ is irrational.

$\triangle C B S E C$ Coaching for OKathematics and Science

Q. Prove that product of three consecutive positive integers is divisible by 6 ?

Ans: Let three consecutive positive integers be, $n, n+1$ and $n+2$.
Whenever a number is divided by 3 , the remainder obtained is either 0 or 1 or 2 .
$\therefore \mathrm{n}=3 \mathrm{p}$ or $3 \mathrm{p}+1$ or $3 \mathrm{p}+2$, where p is some integer.
If $n=3 p$, then n is divisible by 3 .
If $n=3 p+1$, then $n+2=3 p+1+2=3 p+3=3(p+1)$ is divisible by 3 .
If $n=3 p+2$, then $n+1=3 p+2+1=3 p+3=3(p+1)$ is divisible by 3 .
So, we can say that one of the numbers among $n, n+1$ and $n+2$ is always divisible by 3 .
$\Rightarrow \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$ is divisible by 3 .
Similarly, whenever a number is divided 2 , the remainder obtained is 0 or 1 .
$\therefore \mathrm{n}=2 \mathrm{q}$ or $2 \mathrm{q}+1$, where q is some integer.
If $n=2 q$, then n and $n+2=2 q+2=2(q+1)$ are divisible by 2 .
If $\mathrm{n}=2 \mathrm{q}+1$, then $\mathrm{n}+1=2 \mathrm{q}+1+1=2 \mathrm{q}+2=2(\mathrm{q}+1)$ is divisible by 2 .
So, we can say that one of the numbers among $n, n+1$ and $n+2$ is always divisible by 2 .
$\Rightarrow n(n+1)(n+2)$ is divisible by 2 .
Since, $n(n+1)(n+2)$ is divisible by 2 and $3 . \therefore n(n+1)(n+2)$ is divisible by 6 .
Q. Express HCF of $F 65$ and 117 in the form of $65 \mathrm{~m}+117 \mathrm{n}$

Ans: $117=65 \times 1+52 ; 65=52 \times 1+13 ; 52=4 \times 13+0$
In this step the remainder is zero. Thus, the divisor i.e. 13 in this step is the H.C.F. of the given numbers
The H.C.F. of 65 and 117 is 13
Now, $\quad 13=65-52 \times 1 \Rightarrow 52=117-65 \times 1 \Rightarrow 13=65-(117-65 \times 1) \times 1 \Rightarrow 13=65 \times 2-117$ $\Rightarrow 13=65 \times 2+117 \times(-1)$
the H.C.F. of 65 and 117 is of the form $65 m+117 n$, where $m=2$ and $n=-1$
Q. Prove that: the cube of any positive integer is either of the form $2 m$ or $2 m+1$, for some integer.

Ans: Let a be any positive integer. So, a is either an even positive integer or an odd positive integer.
$\therefore \mathrm{a}=2 \mathrm{n}$ or $\mathrm{a}=2 \mathrm{n}+1$

$$
a^{3}=(2 n)^{3}=8 n 3=2\left(4 n^{3}\right)=2 m, \text { where } m=4 n^{3}
$$

Or $a^{3}=(2 n+1)^{3}=8 n^{3}+12 n^{2}+6 n+1=2\left(4 n^{3}+6 n^{2}+3 n\right)+1=2 m+1$, where $m=4 n^{3}+6 n 2+3 n$

So, the cube of any positive integer is either of the form $2 m$ or $2 m+1$, where m is integer.
Q. Q. HCF of 657 and 963 is expressible in the form of $657 x+963 y \times(-15)$

Ans: Since $963>657$, we apply the division lemma to 963 and 657 to obtain HCF.
$963=657 \times 1+306 ; 657=306 \times 2+45 ; 306=45 \times 6+36 ; 45=36 \times 1+9 ; 36=9 \times 4+0$
In this step the remainder is zero. Thus, the divisor i.e. 9 So, The H.C.F. of 657 and 963 is 9.
Now, We can write $9=45-36 \times 1$ [from last steps of HCF]; $36=306-45 \times 6$;
$9=45-(306-45 \times 6) \times 1=45 \times 7-306 \times 1 ; 9=(657-306 \times 2) \times 7-306 \times 1=657 \times 7-306 \times 15$
$9=657 \times 7-(963-657 \times 1) \times 15=657 \times 22-963 \times 15$
\Rightarrow HCF of 657 and $963=657 \times 22-963 \times 15$
\therefore HCF, 9 can be expressed as linear combination of 657 and 963 as $9=657 x+963 y$, where x and y are not unique. Hence In linear combination, $x=22$ and $y=-15$
Q. A rectangular courtyard measures 18 m 72 cm long and 13 m 20 cm broad. It is to be paved with square tiles of same size. Find the least possible no. of such tiles.

Ans: Now, HCF of 1872 and $1320=24$ Therefore, the side of the required square tile $=24 \mathrm{~cm}$.
Thus, no. of such square tile required to pave the courtyard
$=[$ Area if courtyard/area of 1 tiles $]=[1872 \times 1320] /[24 \times 24]=4290$
Hence, least possible no. of such tiles $=4290$
Q. show that any positive odd integer is of the form $6 q+1$,or $6 q+3$,or $6 q+5$ where q is some integer.

Ans: Let 'a' be any positive odd integer. and $\mathrm{b}=6$.
Let ' q ' be quotient and ' r ' be remainder.
$a=6 q+r$ where $0 \leq r<6 \quad$ or $a=6 q+0 \quad$ or $a=6 q+1 \quad$ or $a=6 q+2 \quad$ or $a=6 q+3 \quad$ or $a=6 q+4$ or $a=6 q+5$
$=>r=0,1,2,3,4,5$ But Now, here odd integer are $6 q+1,6 q+3$, and $6 q+5$
Hence proved that any odd integer is of the form $6 q+1,6 q+3$ and $6 q+5$
Page $=14$
Q. Show that $5 n$ can not end with the digit 2 for any natural number n.

Ans: Here Given Number=5n
Now Prime factors of this number=(5)n

Now, For the number to end with 2 , it should be a factor of 2 which is not so in this case.
So it cannot end with the digit as 2 .
Q. Show that the cube of any positive integer is either of the form $2 m$ OR $2 m+1$ for some integer

Ans: Let a be any positive integer. So, a is either an even positive integer or an odd positive integer.
$\therefore \mathrm{a}=2 \mathrm{n}$ or $\mathrm{a}=2 \mathrm{n}+1$
a $3=(2 n) 3=8$ n $3=2(4 \mathrm{n} 3)=2 \mathrm{~m}$, where $\mathrm{m}=4 \mathrm{n} 3$
Or a $3=(2 n+1) 3=8 n 3+12 n 2+6 n+1=2(4 n 3+6 n 2+3 n)+1=2 m+1$, where $m=4 n 3+6 n 2+$ 3n

So, the cube of any positive integer is either of the form $2 m$ or $2 m+1$, where m is integer.
Q. Show that any positive odd integer is of the form $6 q+1$,or $6 q+3$,or $6 q+5$ where q is some integer.

Ans: Let ' a ' be any positive odd integer. and $\mathrm{b}=6$.
Let ' q ' be quotient and 'r' be remainder.
$a=6 q+r$ where $0 \leq r<6$ or $a=6 q+0 \quad$ or $a=6 q+1 \quad$ or $a=6 q+2$
or $a=6 q+3$ or $a=6 q+4$ or $a=6 q+5$
So $r=0,1,2,3,4,5$ For odd $r=1,3,5$
Then, odd integer will be $6 q+1,6 q+3$, and $6 q+5$
Hence proved that any odd integer is of the form $6 q+1,6 q+3$ and $6 q+5$
Q. show that $\mathrm{n}^{2}-1$ is divisible by 8 if n is odd positive integer

Ans: Any odd positive integer is of the form $4 m+1$ or $4 m+3$ for some integer m.
When $n=4 m+1$,
$n^{2}-1=(4 m+1)^{2}-1=16 m^{2}+8 m+1-1=16 m^{2}+8 m=8 m(2 m+1) \quad \Rightarrow n^{2}-1$ is divisible by 8
When $n=4 m+3 \quad n^{2}-1=(4 m+3)^{2}-1=16 m^{2}+24 m+9-1=16 m^{2}+24 m+8=8\left(2 m^{2}+3 m+1\right) \Rightarrow n^{2}-$
1 is divisible by 8 . Hence, $n^{2}-1$ is divisible by 8 if n is an odd positive integer.

