ACBSE Coaching for Mathematics and Science

10th Chapter Number System CBSE Test Paper – 04

Choose the correct option.

1.
$$\sqrt{5} - 3 - 2$$
 is:

a rational number

C. equal to zero B. a natural number

D. an irrational number

2. Let
$$x = \frac{7}{22 \times 53}$$
 be a rational number. Then x has decimal expansion which terminates:

after four places of decimal

after three places of decimal B.

after two places of decimal ____ _ D, __ after five places of decimal

3. The decimal expansion of
$$\frac{63}{72 \times 175}$$
 is:

A. Terminating B. Non-terminating

Non terminating and repeating

D. None of these

4. If HCF and LCM of two numbers are 4 and 9696, then the product of the two numbers is:

9696

B. 24242 C. 38784 D. 4848

5.
$$(2+\sqrt{3}+\sqrt{5})$$
 is a:

natural number

Integer number B.

C. Rational number D. Irrational number

6. If
$$\left(\frac{9}{7}\right)^3 \times \left(\frac{49}{81}\right)^{2x-6} = \left(\frac{7}{9}\right)^9$$
, the value of x is:

12

B.

C. 8 D.

A. terminating decimal

B. non-terminating repeating decimal

C. non-terminating decimal which is non-repeating

None of the above

If $(m)^n = 32$, where m and and n are positive integers, then the value of $(n)^{mn}$ is: 8.

32

C. (5)10 D. (5)25

9. The number 0.57 in the
$$\frac{p}{q}$$
 form $(q \neq 0)$ is:

			JS	SE C	Coacl	hina	for Me	athen	T	and S	Clanca	
10.	0.57	can b	e writter				jer 5 e	anten	idiles		crence	
		26 45		A	$\frac{13}{27}$	ND OUI	C.	$\frac{13}{29}$	ON	D.	<u>57</u> 99	
11. Any one of the numbers a , $(a + 2)$ and $(a + 4)$ is a multiple of:												
	A.	2		B.	3		C.	5		D.	7	
12.	If p	is a pı	ime nun	nber and	d p divi	ides k^2 ,	then p di	vides:				
	A.	$2k^2$		B.	k		C.	3 <i>k</i>		D.	None of the	nese
13. For some integer <i>m</i> , every even integer is of the form												
(A) <i>m</i>			(B)	(B) $m + 1$			(C) 2	(C) 2m			(D) $2m +$	1
14. For some integer q , every odd integer is of the form												
(A) q			(B)	(B) $q + 1$			(C) 2	(C) 2q			(D) 2q +	1
15. n^2	-1 i	is divi	isible b	y 8, if	n is		X'					
(A) an integer			(B)	(B) a natural number			(C) an odd integer (D) a				n even inte	eger
16. If of <i>m</i> i		HCF o	of 65 an	nd 117	is exp	ressib	le in the	form	65 <i>m</i> –	117, the	en the valu	ie
(A) 4			(B)	2			(C) 1	[(D) 3	
17. The respect			number	which	ı divid	les 70	and 125	, leavi	ng ren	nainders	5 and 8,	
(A) 13			(B)	(B) 65			(C) 8	(C) 875			(D) 1750	
		_	ve integ then H			are wi	ritten as	a = x3	y2 and	d b = xy3	3; <i>x</i> , <i>y</i> are	
(A) xy	V		(B)	xy^2			(C) x	x^3y^3			(D) x^2y^2	
			ve integ				express	sed as	p = ab	p^2 and q	$=a^3b; a, b$)

20. The product of a non-zero rational and an irrational number is

(B) a^2b^2

(A) always irrational (B) always rational (C) rational or irrational (D) one

(C) a^3b^2

(A) *ab*

(D) a^3b^3