10th Chapter Number System CBSE Test Paper - 01

1 mark questions

1. 3.24636363 ... is:
(a) a terminating decimal number
(b) a non-terminating repeating decimal number
(c) a rational number
(d) both
(b) and (c)
2. For some integer q , every odd integer is of the form :
(a) $2 q$
(b) $2 q+1$
(c) q
(d) $q+1$
3. If the HCF of 85 and 153 is expressible in the form $85 m-153$, then the value of m is :
(a) 1
(b) 4
(c) 3
(d) 2
4. If two integers a and b are written as $a=x^{3} y^{2}$ and $b=x y^{4} ; x, y$ are prime numbers, then H.C.F. (a, b) is :
(a) $x^{3} y^{3}$
(b) $x^{2} y^{2}$
(c) $x y$
(d) $x y^{2}$
5. If least prime factor of a is 3 and least prime factor of b is 7 , the least prime factor of $(a+b)$ is:
(a) 2
(b) 3
(c) 5
(d) 11

2 marks questions
6. Show that every positive even integer is of the from 2 m , and that every positive odd integer is of the form 2 m +1 , where m is some integer.
7. Show that any positive odd integer is of the form $6 m+1$, or $6 m+3$, or $6 m+5$, where m is some integer.
8. Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1+5$ are composite numbers.
9. Show that any positive integer is of the form $3 q$ or $3 q+1$ or $3 q+2$ for some integer q.
10. Show that $5-\sqrt{ } 3$ is irrational.

3 marks questions
11. Check whether 6^{n} can end with the digit 0 , for any natural number n.
12. Prove that one of every three consecutive positive integers is divisible by 3 .
13. Prove that $n^{2}-n$ is divisible by 2 for every positive integer n.
14. Use Euclid division lemma to show that cube of any positive integer is either of the form $9 \mathrm{~m}, 9 \mathrm{~m}+1$, or $9 m+8$

OR,
If d is the HCF of 45 and 27 , find $x \& y$ satisfying $d=27 x+45 y$.
(Ans $d=9, x=2, y=-1$)
15. Prove that if x and y are both odd positive integers, then $\mathrm{x}^{2}+\mathrm{y}^{2}$ is even but not divisible by 4

OR,
Prove that one and only one out of $\mathrm{n}, \mathrm{n}+2$ and $\mathrm{n}+4$ is divisible by 3 , where n is any positive integer

