NUMBER SYSTEMS

Numbers are intellectual witnesses that belong only to mankind.

1. If the H C F of 657 and 963 is expressible in the form of $657 x+963 x-15$ find x. (Ans:x=22)

Ans: Using Euclid's Division Lemma

$$
\begin{aligned}
\mathrm{a} & =\mathrm{bq}+\mathrm{r}, \mathrm{o} \leq \mathrm{r}<\mathrm{b} \\
963 & =657 \times 1+306 \\
657 & =306 \times 2+45 \\
306 & =45 \times 6+36 \\
45 & =36 \times 1+9 \\
36 & =9 \times 4+0
\end{aligned}
$$

$\therefore \operatorname{HCF}(657,963)=9$
now $9=657 \mathrm{x}+963 \times(-15)$
$657 x=9+963 \times 15$

$$
=9+14445
$$

$657 \mathrm{x}=14454$
$\mathrm{x}=14454 / 657$

$$
\mathrm{x}=22
$$

2. Express the GCD of 48 and 18 as a linear combination. (Ans: Not unique)

$$
\begin{array}{ll}
& \\
& \text { A=bq+r, where } \mathrm{o} \leq \mathrm{r}<\mathrm{b} \\
& 48=18 \times 2+12 \\
& 18=12 \times 1+6 \\
& 12=6 \times 2+0 \\
& \therefore \mathrm{HCF}(18,48)=6 \\
& \text { now } 6=18-12 \times 1 \\
& 6=18-(48-18 \times 2) \\
& 6=18-48 \times 1+18 \times 2 \\
& 6=18 \times 3-48 \times 1 \\
& 6=18 \times 3+48 \times(-1) \\
\text { i.e. } & 6=18 \times+48 \mathrm{y} \\
\therefore \quad & x=3, y=-1
\end{array}
$$

$$
\begin{aligned}
& 6=18 \times 3+48 \times(-1) \\
& =18 \times 3+48 \times(-1)+18 \times 48-18 \times 48 \\
& =18(3+48)+48(-1-18) \\
& =18 \times 51+48 \times(-19) \\
& 6=18 x+48 y \\
\therefore & x=51, y=-19
\end{aligned}
$$

Hence, x and y are not unique.
3. Prove that one of every three consecutive integers is divisible by 3 .

Ans:

$\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$ be three consecutive positive integers
We know that n is of the form $3 \mathrm{q}, 3 \mathrm{q}+1,3 \mathrm{q}+2$
So we have the following cases
Case - I when $\mathrm{n}=3 \mathrm{q}$
In the this case, n is divisible by 3 but $\mathrm{n}+1$ and $\mathrm{n}+2$ are not divisible by 3
Case - II When $n=3 q+1$
Sub $\mathrm{n}=2=3 \mathrm{q}+1+2=3(\mathrm{q}+1)$ is divisible by 3 . but n and $\mathrm{n}+1$ are not divisible by 3

Case - III When $n=3 \mathrm{q}+2$
Sub $\mathrm{n}=2=3 \mathrm{q}+1+2=3(\mathrm{q}+1)$ is divisible by 3 . but n and $\mathrm{n}+1$ are not divisible by 3

Hence one of $n, n+1$ and $n+2$ is divisible by 3
4. Find the largest possible positive integer that will divide 398, 436, and 542 leaving remainder 7, 11, 15 respectively.
(Ans: 17)
Ans: The required number is the HCF of the numbers
Find the HCF of 391, 425 and 527 by Euclid's algorithm
$\therefore \operatorname{HCF}(425,391)=17$
Now we have to find the HCF of 17 and 527

$$
527=17 \times 31+0
$$

$\therefore \operatorname{HCF}(17,527)=17$
$\therefore \operatorname{HCF}(391,425$ and 527 $)=17$
5. Find the least number that is divisible by all numbers between 1 and 10 (both inclusive).
(Ans:2520)
Ans: The required number is the LCM of 1,2,3,4,5,6,7,8,9,10

$$
\therefore \mathrm{LCM}=2 \times 2 \times 3 \times 2 \times 3 \times 5 \times 7=2520
$$

6. Show that 571 is a prime number.

Ans: Let $x=571 \Rightarrow \sqrt{x}=\sqrt{ } 571$
Now 571 lies between the perfect squares of $(23)^{2}$ and $(24)^{2}$
Prime numbers less than 24 are $2,3,5,7,11,13,17,19,23$
Since 571 is not divisible by any of the above numbers
571 is a prime number
7. If d is the HCF of 30,72 , find the value of $x \& y$ satisfying $d=30 x+72 y$.
(Ans:5, -2 (Not unique)
Ans: Using Euclid's algorithm, the $\operatorname{HCF}(30,72)$
$72=30 \times 2+12$
$30=12 \times 2+6$
$12=6 \times 2+0$
$\operatorname{HCF}(30,72)=6$
$6=30-12 \times 2$
$6=30-(72-30 \times 2) 2$
$6=30-2 \times 72+30 \times 4$
$6=30 \times 5+72 \times-2$
$\therefore \mathrm{x}=5, \mathrm{y}=-2$
Also $6=30 \times 5+72(-2)+30 \times 72-30 \times 72$
Solve it, to get

$$
x=77, y=-32
$$

Hence, x and y are not unique
8. Show that the product of 3 consecutive positive integers is divisible by 6 .

Ans: Proceed as in question sum no. 3
9. Show that for odd positive integer to be a perfect square, it should be of the form $8 \mathrm{k}+1$.
Let $\mathrm{a}=2 \mathrm{~m}+1$
Ans: Squaring both sides we get

$$
\mathrm{a}^{2}=4 \mathrm{~m}(\mathrm{~m}+1)+1
$$

\therefore product of two consecutive numbers is always even

$$
\begin{gathered}
\mathrm{m}(\mathrm{~m}+1)=2 \mathrm{k} \\
\mathrm{a}^{2}=4(2 \mathrm{k})+1 \\
\mathrm{a}^{2}=8 \mathrm{k}+1
\end{gathered}
$$

Hence proved
10. Find the greatest number of 6 digits exactly divisible by 24,15 and 36 .
(Ans:999720)
Ans: LCM of 24, 15, 36
LCM $=3 \times 2 \times 2 \times 2 \times 3 \times 5=360$
Now, the greatest six digit number is 999999
Divide 999999 by 360

$$
\therefore \mathrm{Q}=2777, \mathrm{R}=279
$$

\therefore the required number $=999999-279=999720$
11. If a and b are positive integers. Show that $\sqrt{ } 2$ always lies between $\frac{a}{b}$ and $\frac{a-2 b}{a+b}$

Ans: We do not know whether $\frac{a^{2}-2 b^{2}}{b(a+b)}$ or $\frac{a}{b}<\frac{a+2 b}{a+b}$
\therefore to compare these two number,
Let us comute $\frac{a}{b}-\frac{a+2 b}{a+b}$

$$
=>\text { on simplifying, we get } \frac{a^{2}-2 b^{2}}{b(a+b)}
$$

$$
\therefore \frac{a}{b}-\frac{a+2 b}{a+b}>0 \text { or } \frac{a}{b}-\frac{a+2 b}{a+b}<0
$$

$$
\text { now } \frac{a}{b}-\frac{a+2 b}{a+b}>0
$$

$$
\frac{a^{2}-2 b^{2}}{b(a+b)}>0 \quad \text { solve it, we get, } \mathrm{a}>\sqrt{ } 2 \mathrm{~b}
$$

Thus, when $\mathrm{a}>\sqrt{ } 2 \mathrm{~b}$ and

$$
\frac{a}{b}<\frac{a+2 b}{a+b}
$$

We have to prove that $\frac{a+2 b}{a+b}<\sqrt{ } 2<\frac{a}{b}$
Now a $>\sqrt{ } 2 \mathrm{~b} \Rightarrow 2 \mathrm{a}^{2}+2 \mathrm{~b}^{2}>2 \mathrm{~b}^{2}+\mathrm{a}^{2}+2 \mathrm{~b}^{2}$
On simplifying we get

$$
\sqrt{ } 2>\frac{a+2 b}{a+b}
$$

Also $\mathrm{a}>\sqrt{ } 2$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}}>\sqrt{ } 2$
Similarly we get $\sqrt{ } 2,<\frac{a+2 b}{a+b}$
Hence $\frac{a}{b}<\sqrt{ } 2<\frac{a+2 b}{a+b}$
12. Prove that $(\sqrt{n-1}+\sqrt{n+1})$ is irrational, for every $n \in N$

Self Practice

