QUADRATIC EQUATIONS

For the things of this world cannot be made known without a knowledge of mathematics.

1. Solve by factorization
a. $\quad 4 \mathbf{x}^{2}-4 \mathbf{a}^{2} \mathbf{x}+\left(\mathbf{a}^{4}-b^{4}\right)=0$

Ans:

$$
\begin{aligned}
& 4 \mathrm{x}^{2}-4 \mathrm{a}^{2} \mathrm{x}+\left(\mathrm{a}^{4}-\mathrm{b}^{4}\right)=0 . \\
& 4 \mathrm{x}^{2}-\left[2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\right] \mathrm{x}+\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=0 . \\
\Rightarrow & 2 \mathrm{x}\left[2 \mathrm{x}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\right]-\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\left[2 \mathrm{x}-\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=0 .\right. \\
\Rightarrow & x=\frac{a^{2}+b^{2}}{2} x=\frac{a^{2}-b^{2}}{2}
\end{aligned}
$$

b. $\quad \mathbf{x}^{2}+\left(\frac{a}{a+b}+\frac{a+b}{a}\right) \mathbf{x}+\mathbf{1}=\mathbf{0}$

Ans: $\quad x^{2}+\left(\frac{a}{a+b}+\frac{a+b}{a}\right) x+1$

$$
\begin{aligned}
& \Rightarrow x^{2}+\left(\frac{a}{a+b} x+\frac{a+b}{a} x+\frac{a}{a+b} \cdot \frac{a+b}{a}\right) \\
& \Rightarrow x\left[\mathrm{x}+\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}}\right]+\frac{\mathrm{a}+\mathrm{b}}{\mathrm{a}}\left[\mathrm{x}+\frac{\mathrm{a}}{\mathrm{a}+\mathrm{b}}\right]=0 \\
& \Rightarrow x=\frac{-a}{a+b} x=\frac{(-a+b)}{a} \quad \mathrm{a}+\mathrm{b} \neq 0 .
\end{aligned}
$$

c. $\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} \quad \mathbf{a}+\mathbf{b} \neq \mathbf{0}$

Ans: $\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\mathrm{a}+\mathrm{b}+\mathrm{x}}-\frac{1}{\mathrm{x}}=+\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}} \\
& \Rightarrow \frac{x-(a+b+x)}{x(a+b+x)}=+\frac{a+b}{a b}
\end{aligned}
$$

$$
\Rightarrow(a+b)\{x(a+b+x)+a b\}=0
$$

$$
\Rightarrow x(a+b+x)+a b=0
$$

$$
\Rightarrow x^{2}+a x+b x+a b=0
$$

$$
\Rightarrow(x+a)(x+b)=0
$$

$$
\Rightarrow x=-a \quad x=-b
$$

d. $(x-3)(x-4)=\frac{34}{33^{2}}$

Ans: $(x-3)(x-4)=\frac{34}{33^{2}}$
$\Rightarrow x^{2}-7 \mathrm{x}+12=\frac{34}{33^{2}}$
$x^{2}-7 x+\frac{13034}{33^{2}}=0$
$x^{2}-7 \mathrm{x}+\frac{98}{33} x \frac{133}{33}=0$
$x^{2}-\frac{231}{33} x+\frac{98}{33} x \frac{133}{33}=0$
$x^{2}-\left(\frac{98}{33}+\frac{133}{33}\right) x+\frac{98}{33} x \frac{133}{33}=0$
$\Rightarrow\left(x-\frac{98}{33}\right)\left(x-\frac{133}{33}\right)=0$
$\Rightarrow x=\frac{98}{33}$ or $x=\frac{133}{33}$
e. $\mathbf{x}=\frac{1}{2-\frac{1}{2-\frac{1}{2-x}}}$
$\mathbf{x} \neq \mathbf{2}$

Ans:

$$
\begin{aligned}
& x=\frac{2}{2-\frac{1}{2-\frac{1}{2-x}}} \quad x \neq 2 \\
& x=\frac{1}{2-\frac{1}{2-\frac{1}{2-x}}} \\
& x=\frac{1}{2-\frac{1}{2-\frac{2-x-}{4-2 x-1}}}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{2-\frac{2-x}{3-2 x}} \\
& \Rightarrow x=\frac{3-2 x}{2(3-2 x)-(2-x)} \\
& \Rightarrow x=\frac{3-2 x}{4-3 x} \\
& \Rightarrow 4 x-3 x^{2}=3-2 x \\
& \Rightarrow 3 x^{2}-6 x+3=0 \\
& \Rightarrow(x-1)^{2}=0 \\
& x=1,1 .
\end{aligned}
$$

2. By the method of completion of squares show that the equation $4 x^{2}+3 x+5=0$ has no real roots.

Ans: $\quad 4 x^{2}+3 x+5=0$

$$
\begin{aligned}
& \Rightarrow x^{2}+\frac{3}{4} x+\frac{5}{4}=0 \\
& \Rightarrow x^{2}+\frac{3}{4} x+\left(\frac{3}{8}\right)^{2}=\frac{-5}{4}+\frac{9}{64} \\
& \Rightarrow\left(x+\frac{3}{8}\right)^{2}=\frac{-71}{64} \\
& \Rightarrow\left(x+\frac{3}{8}\right)^{2}=\frac{-71}{64} \\
& \Rightarrow x+\frac{3}{8}=\sqrt{\frac{-71}{64}} \text { not a real no. }
\end{aligned}
$$

Hence QE has no real roots.
3. The sum of areas of two squares is $468 \mathrm{~m}^{2}$ If the difference of their perimeters is 24 cm , find the sides of the two squares.

Ans: Let the side of the larger square be x.
Let the side of the smaller square be y.
APQ $x^{2}+y^{2}=468$
Cond. II $\quad 4 x-4 y=24$
$\Rightarrow x-y=6$

$$
\Rightarrow x=6+y
$$

$$
x^{2}+y^{2}=468
$$

$$
\Rightarrow(6+y)^{2}+y^{2}=468
$$

$$
\text { on solving we get } y=12
$$

$$
\Rightarrow x=(12+6)=18 \mathrm{~m}
$$

\therefore sides are $18 \mathrm{~m} \& 12 \mathrm{~m}$.
4. A dealer sells a toy for Rs. 24 and gains as much percent as the cost price of the toy. Find the cost price of the toy.

Ans: Let the C.P be x

$$
\begin{aligned}
& \therefore \text { Gain }=x \% \\
& \Rightarrow \text { Gain }=x \cdot \frac{x}{100} \\
& \quad \text { S.P }=\text { C.P + Gain }
\end{aligned}
$$

$$
\mathrm{SP}=24
$$

$$
\Rightarrow x+\frac{x^{2}}{100}=24
$$

On solving $x=20$ or -120 (rej)
\therefore C.P of toy $=$ Rs. 20
5. A fox and an eagle lived at the top of a cliff of height 6 m , whose base was at a distance of 10 m from a point A on the ground. The fox descends the cliff and went straight to the point A . The eagle flew vertically up to a height x metres and then flew in a straight line to a point A, the distance traveled by each being the same. Find the value of x .

Ans: Distance traveled by the fox $=$ distance traveled by the eagle $(6+x)^{2}+(10)^{2}=(16-x)^{2}$ on solving we get

$$
x=2.72 \mathrm{~m}
$$

6. A lotus is 2 m above the water in a pond. Due to wind the lotus slides on the side and only the stem completely submerges in the water at a distance of 10 m from the original position. Find the depth of water in the pond.

Ans: $(x+2)^{2}=x^{2}+10^{2}$
$x^{2}+4 x+4=x^{2}+100$
$\Rightarrow 4 x+4=100$
$\Rightarrow x=24$
Depth of the pond $=24 \mathrm{~m}$
7 Solve $x=\sqrt{6+\sqrt{6+\sqrt{6}}}$.
Ans: $x=\sqrt{6+\sqrt{6^{+}} \sqrt{6^{+}}}$
$\Rightarrow x=\sqrt{6+x}$
$\Rightarrow x^{2}=6+x$
$\Rightarrow x^{2}-x-6=0$
$\Rightarrow(x-3)(x+2)=0$
$\Rightarrow x=3$
8. The hypotenuse of a right triangle is 20 m . If the difference between the length of the other sides is 4 m . Find the sides.

Ans: APQ
$x^{2}+y^{2}=20^{2}$
$x^{2}+y^{2}=400$
also $x-y=4$
$\Rightarrow x=404+y$
$(4+y)^{2}+y^{2}=400$
$\Rightarrow 2 y^{2}+8 y-384=0$
$\Rightarrow(y+16)(y-12)=0$
$\Rightarrow y=12 \quad y=-16$ (N.P)
\therefore sides are $12 \mathrm{~cm} \& 16 \mathrm{~cm}$
9. The positive value of k for which $x^{2}+K x+64=0 \& x^{2}-8 x+k=0$ will have real roots.

Ans: $x^{2}+\mathrm{K} x+64=0$

$$
\begin{aligned}
& \Rightarrow b^{2}-4 \mathrm{ac} \geq 0 \\
& \mathrm{~K}^{2}-256 \geq 0 \\
& \mathrm{~K} \geq 16 \text { or } \mathrm{K} \leq-16 \\
& x^{2}-8 x+\mathrm{K}=0 \\
& 64-4 \mathrm{~K} \geq 0
\end{aligned}
$$

JSTNIL THT(1): ACBSE Coaching for Olathematics and Science

$$
\begin{gather*}
\Rightarrow 4 \mathrm{~K} \leq 64 \\
\mathrm{~K} \leq 16 \tag{2}
\end{gather*}
$$

From (1) \& (2) $\mathrm{K}=16$
10. A teacher on attempting to arrange the students for mass drill in the form of a solid square found that 24 students were left over. When he increased the size of the square by one student he found he was short of 25 students. Find the number of students.

Ans: Let the side of the square be x.
No. of students $=x^{2}+24$
New side $=x+1$
No. of students $=(x+1)^{2}-25$
$\mathrm{APQ} \Rightarrow x^{2}+24=(x+1)^{2}-25$
$\Rightarrow x^{2}+24=x^{2}+2 x+1-25$
$\Rightarrow 2 x=48$
$\Rightarrow x=24$
\therefore side of square $=24$
No. of students $=576+24$

$$
=600
$$

11. A pole has to be erected at a point on the boundary of a circular park of diameter 13 m in such a way that the differences of its distances from two diametrically opposite fixed gates A \& B on the boundary in 7 m . Is it possible to do so? If answer is yes at what distances from the two gates should the pole be erected.

Ans: $\mathrm{AB}=13 \mathrm{~m}$
$\mathrm{BP}=x$
$\Rightarrow \mathrm{AP}-\mathrm{BP}=7$
$\Rightarrow \mathrm{AP}=x+7$
APQ
$\Rightarrow(13)^{2}=(x+7)^{2}+x^{2}$
$\Rightarrow x^{2}+7 x-60=0$
$(x+12)(x-5)=0$
$\Rightarrow x=-12$ N.P
$x=5$

\therefore Pole has to be erected at a distance of 5 m from gate $\mathrm{B} \& 12 \mathrm{~m}$ from gate A .
12. If the roots of the equation $(\mathrm{a}-\mathrm{b}) x^{2}+(\mathrm{b}-\mathrm{c}) x+(\mathrm{c}-\mathrm{a})=0$ are equal. Prove that $2 \mathrm{a}=\mathrm{b}+\mathrm{c}$.

Ans: $\quad(\mathrm{a}-\mathrm{b}) x^{2}+(\mathrm{b}-\mathrm{c}) x+(\mathrm{c}-\mathrm{a})=0$

$$
\text { T.P } 2 \mathrm{a}=\mathrm{b}+\mathrm{c}
$$

$$
B^{2}-4 A C=0
$$

$$
(b-c)^{2}-[4(a-b)(c-a)]=0
$$

$$
\mathrm{b}^{2}-2 \mathrm{bc}+\mathrm{c}^{2}-\left[4\left(\mathrm{ac}-\mathrm{a}^{2}-\mathrm{bc}+\mathrm{ab}\right)\right]=0
$$

$\Rightarrow \mathrm{b}^{2}-2 \mathrm{bc}+\mathrm{c}^{2}-4 \mathrm{ac}+4 \mathrm{a}^{2}+4 \mathrm{bc}-4 \mathrm{ab}=0$

$$
\begin{aligned}
& \Rightarrow b^{2}+2 b c+c^{2}+4 a^{2}-4 a c-4 a b=0 \\
& \Rightarrow(b+c-2 a)^{2}=0 \\
& \Rightarrow b+c=2 a
\end{aligned}
$$

13. X and Y are centers of circles of radius 9 cm and 2 cm and $\mathrm{XY}=17 \mathrm{~cm} . \mathrm{Z}$ is the centre of a circle of radius 4 cm , which touches the above circles externally. Given that $\angle \mathrm{XZY}=90^{\circ}$, write an equation in r and solve it for r .

Ans: Let r be the radius of the third circle

$$
\mathrm{XY}=17 \mathrm{~cm} \Rightarrow \mathrm{XZ}=9+\mathrm{rYZ}=2
$$

APQ
$(r+9)^{2}+(r+2)^{2}=(1+r)^{2}$
$\Rightarrow r^{2}+18 r+81+r^{2}+4 r+4=289 \mathrm{~S}$
$\Rightarrow r^{2}+11 r-10 r=0$
$(r+17)(r-6)=0$
$\Rightarrow r=-17$ (N.P)
$r=6 \mathrm{~cm}$
\therefore radius $=6 \mathrm{~cm}$.

