Solution of quadratic equation by formula method

Consider a quadratic equation $a x^{2}+b x+c=0 \quad \mathrm{a} \neq 0$ We rewrite the given equation as

$$
\begin{aligned}
x^{2}+\frac{b}{a} x+\frac{c}{a} & =0 \\
\Rightarrow \quad x^{2}+2\left(\frac{b}{2 a}\right) x+\frac{c}{a} & =0 \quad \Rightarrow x^{2}+2\left(\frac{b}{2 a}\right) x=-\frac{c}{a}
\end{aligned}
$$

Adding $\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}$ both sides we get, $x^{2}+2\left(\frac{b}{2 a}\right) x+\left(\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}$
That is, $\quad\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$

$$
\Rightarrow \quad x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

So, we have $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The solution set is $\left\{\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right\}$.
The formula given in equation (1) is known as quadratic formula.

Solution of quadratic equation by formula method

Problem

Solve the equation $\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}$, where $x+1 \neq 0, x+2 \neq$ $x+4 \neq 0$ using quadratic formula.

Solution Note that the given equation is not a quadratic equation.
Consider $\quad \frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}$
That is, $\frac{1}{x+1}=2\left[\frac{2}{x+4}-\frac{1}{x+2}\right]=2\left[\frac{2 x+4-x-4}{(x+4)(x+2)}\right]$

$$
\frac{1}{x+1}=2\left[\frac{x}{(x+2)(x+4)}\right]
$$

$$
x^{2}+6 x+8=2 x^{2}+2 x
$$

Thus, we have $x^{2}-4 x-8=0$, which is a quadratic equation.
(The above equation can also be obtained by taking LCM)
Using the quadratic formula (1) we get,

$$
\text { Thus, } \quad x=2+2 \sqrt{3} \text { or } 2-2 \sqrt{3}
$$

$$
x=\frac{4 \pm \sqrt{16-4(1)(-8)}}{2(1)}=\frac{4 \pm \sqrt{48}}{2}
$$

Hence, the solution set is $\{2-2 \sqrt{3}, 2+2 \sqrt{3}\}$
Solve the following quadratic equations by completing the square .
(i) $x^{2}+6 x-7=0$
(ii) $x^{2}+3 x+1=0$
(iii) $2 x^{2}+5 x-3=0$
(iv) $4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$
(v) $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$
(vi) $\frac{5 x+7}{x-1}=3 x+2$

Solve the following quadratic equations using quadratic formula.
(i) $x^{2}-7 x+12=0$
(ii) $15 x^{2}-11 x+2=0$
(iii) $x+\frac{1}{x}=2 \frac{1}{2}$
(iv) $3 a^{2} x^{2}-a b x-2 b^{2}=0$
(v) $a\left(x^{2}+1\right)=x\left(a^{2}+1\right)$
(vi) $36 x^{2}-12 a x+\left(a^{2}-b^{2}\right)=0$
(vii) $\frac{x-1}{x+1}+\frac{x-3}{x-4}=\frac{10}{3}$
(viii) $a^{2} x^{2}+\left(a^{2}-b^{2}\right) x-b^{2}=0$
jsuniltutorial.weebly.com
Other Educational Portals

Solution of quadratic equation by formula method

Solve some simple problems expressed in words and some problems describing day-today life situations involving quadratic equation.

1. The sum of a number and its reciprocal is 65/8. Find the number.
2. The difference of the squares of two positive numbers is 45 . The square of the smaller number is four times the larger number. Find the numbers.
3. A farmer wishes to start a 100 sq.m rectangular vegetable garden. Since he has only 30 m barbed wire, he fences the sides of the rectangular garden letting his house compound wall act as the fourth side fence. Find the dimension of the garden.
4. A rectangular field is 20 m long and 14 m wide. There is a path of equal width all around it having an area of 111 sq . metres. Find the width of the path on the outside.
5. A train covers a distance of 90 km at a uniform speed. Had the speed been 15 $\mathrm{km} / \mathrm{hr}$ more, it would have taken 30 minutes less for the journey. Find the original speed of the train.
