Class- X Session- 2022-23

Subject- Mathematics (Standard)

Sample Question Paper

Time Allowed: 3 Hrs. Maximum Marks: 80

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- **6.** Section **E** has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

		\$	SECTION A		
		Section A consists	of 20 questions of 1	mark each.	
S.NO			_		MA RKS
1		wo positive integers s If $HCF(a,b) = p^mq^n$ (b) 30		d b = p^2q^3 , where p and q are, then (m+n)(r+s)= (d) 72	1
2	Let p be a prime (a) $x^2 - px + p = 0$			ts roots as factors of p is $x + p = 0$ (d) $x^2 - px + p + 1 = 0$	1
3	If α and β are the	e zeros of a polynomi	$ial f(x) = px^2 - 2x + 3$	$3p$ and $\alpha + \beta = \alpha\beta$, then p is	1
	(a)-2/3	(b) 2/3	(c) 1/3	(d) -1/3	
4	If the system of	equations $3x+y=1$ ar	$\frac{1}{1}$ nd $(2k-1)x + (k-1)y = 2$	2k+1 is inconsistent, then $k =$	1
	(a) -1	(b) 0	(c) 1	(d) 2	
5		a parallelogram PQF ates of its fourth vert		P(3,4), Q(-2,3) and R(-3,-2),	1
	(a) (-2,-1)	(b) (-2,-3)	(c) $(2,-1)$	(d) (1,2)	
6	\triangle ABC \sim \triangle PQR. If AM and PN are altitudes of \triangle ABC and \triangle PQR respectively and AB ² : PQ ² = 4 : 9, then AM: PN =			1	
	(a) 3:2	(b) 16:81	(c) 4:9	(d) 2:3	

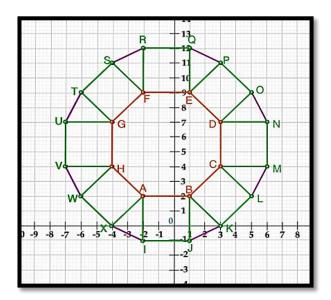
7	If x tan 60° cos 60 (a) cos 30°	$0^\circ = \sin 60^\circ \cot 60^\circ$, the (b) $\tan 30^\circ$	nen $x = (c) \sin 30^{\circ}$	(d) cot3	30°	1
		(1)		(11)		
8	$If \sin\theta + \cos\theta = v$	$\sqrt{2}$, then $\tan\theta + \cot\theta$	=			1
	(a) 1	(b) 2	(c) 3	(d) 4		
9		e, DE BC, AE = a ne following is true?		DE =x units a	nd BC = y	1
		T)	A E			
		B	C			
	(a) $x = \frac{a+b}{ay}$	(b) $y = \frac{ax}{a+b}$	(c) $x = \frac{ay}{a+b}$	(d) $\frac{x}{y}$ =	<u>a</u> b	
10		ium with AD BC			C and BD	1
		er at O such that AC				
	(a) 6cm	(b) 7cm	(c) 8cm	(d) 9cm	1	
11	If two tangents in	clined at an angle of	60° are drawn to a c	circle of radius	s 3cm, then the	1
	length of each tar	gent is equal to				
	(a) $\frac{3\sqrt{3}}{2}$ cm	(b) 3cm	(c) 6cm	(d) $3\sqrt{3}$	cm	
12	The area of the	circle that can be ins	scribed in a square of	f 6cm is		1
	(a) $36\pi \text{ cm}^2$	(b) $18\pi \text{ cm}^2$	(c) $12 \pi \text{cm}^2$	(d) 9π	cm ²	
13	The sum of the le	ngth, breadth and he	eight of a cuboid is 6	$\sqrt{3}$ cm and the	length of its	1
	_	n. The total surface a			2	
	(a) 48 cm^2	(b) 72 cm^2	(c) 96 cm^2	(d) 108	cm ²	
14	If the difference of	of Mode and Median	of a data is 24, then	the difference	e of median	1
	and mean is					
	(a) 8	(b) 12	(c) 24	(d) 36		
15	The number of re	volutions made by a	circular wheel of ra	dius 0.25m in	rolling a	1
	distance of 11km	is				
	(a) 2800	(b) 4000	(c) 5500	(d) 700	0	
16	For the following	distribution				1
_0						
	Class 0-		10-15	15-20	20-25	
	Frequency 10		12	20	9	
		wer limits of the med				
	(a) 15	(b) 25	(c) 30	(d) 35		

Two dice are rolled simultaneously. What is the probability that 6 will come up at least once?				1
	4 > 7/0 c	() 11/0	(1) 10/06	
. ,	, ,	(c) 11/36	(d) 13/36	
If $5 \tan \beta = 4$, then	$1 \frac{5 \sin \beta - 2 \cos \beta}{5 \sin \beta + 2 \cos \beta} =$			1
(a) 1/3	(b) 2/5	(c) 3/5	(d) 6	
followed by a sta	atement of Reason (I		ment of assertion (A) is	1
•	, <u>*</u>	of two numbers is 57	80 and their HCF is 17, then	1
Statement R(Re	ason) : HCF is alwa	ys a factor of LCM		
(a) Both assertion of assertion (A)	n (A) and reason (R)	are true and reason ((R) is the correct explanation	
		are true and reason ((R) is not the correct	
(c) Assertion (A)	is true but reason (F	R) is false.		
(d) Assertion (A)) is false but reason (R) is true.		
,	•	*		1
			two sides of a triangle is	
(a) Both assertion of assertion (A)	n (A) and reason (R)	are true and reason ((R) is the correct explanation	
` '	` '	are true and reason ((R) is not the correct	
(c) Assertion (A)	is true but reason(R) is false.		
(d) Assertion (A)) is false but reason(I	R) is true.		
	once? (a) 1/6 If 5 tanβ = 4, ther (a) 1/3 DIRECTION: If followed by a state Choose the correct of the corr	once? (a) $1/6$ (b) $7/36$ If $5 \tan \beta = 4$, then $\frac{5 \sin \beta - 2 \cos \beta}{5 \sin \beta + 2 \cos \beta} =$ (a) $1/3$ (b) $2/5$ DIRECTION: In the question numb followed by a statement of Reason (I Choose the correct option Statement A (Assertion): If product of their LCM is 340 Statement R(Reason): HCF is always (a) Both assertion (A) and reason (R) of assertion (A) (b) Both assertion (A) and reason (R) explanation of assertion (A) (c) Assertion (A) is true but reason (B) (C) Assertion (B) (C) Assertion (C)	once? (a) $1/6$ (b) $7/36$ (c) $11/36$ If $5 \tan \beta = 4$, then $\frac{5 \sin \beta - 2 \cos \beta}{5 \sin \beta + 2 \cos \beta} =$ (a) $1/3$ (b) $2/5$ (c) $3/5$ DIRECTION: In the question number 19 and 20, a stater followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): If product of two numbers is 57 their LCM is 340 Statement R(Reason): HCF is always a factor of LCM (a) Both assertion (A) and reason (R) are true and reason (of assertion (A) (b) Both assertion (A) and reason (R) are true and reason explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true. Statement A (Assertion): If the co-ordinates of the mid-prof Δ ABC are D(3,5) and E(-3,-3) respectively, then BC = Statement R(Reason): The line joining the mid points of parallel to the third side and equal to half of it. (a) Both assertion (A) and reason (R) are true and reason (of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (of assertion (A)	once? (a) $1/6$ (b) $7/36$ (c) $11/36$ (d) $13/36$ If $5 \tan \beta = 4$, then $\frac{5 \sin \beta - 2 \cos \beta}{5 \sin \beta + 2 \cos \beta} =$ (a) $1/3$ (b) $2/5$ (c) $3/5$ (d) 6 DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): If product of two numbers is 5780 and their HCF is 17, then their LCM is 340 Statement R (Reason): HCF is always a factor of LCM (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true. Statement A (Assertion): If the co-ordinates of the mid-points of the sides AB and AC of Δ ABC are D(3,5) and E(-3,-3) respectively, then BC = 20 units Statement R (Reason): The line joining the mid points of two sides of a triangle is parallel to the third side and equal to half of it. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)

	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
S.No.		Marks
21	If $49x+51y=499$, $51x+49y=501$, then find the value of x and y	2
22	In the given figure below, $\frac{AD}{AE} = \frac{AC}{BD}$ and $\angle 1 = \angle 2$. Show that \triangle BAE \sim \triangle CAD .	2
23	In the given figure, O is the centre of circle. Find $\angle AQB$, given that PA and PB are tangents to the circle and $\angle APB=75^\circ$.	2
24	The length of the minute hand of a clock is 6cm. Find the area swept by it when it moves from 7:05 p.m. to 7:40 p.m. OR In the given figure, arcs have been drawn of radius 7cm each with vertices A, B, C and D of quadrilateral ABCD as centres. Find the area of the shaded region.	2

25	If $sin(A+B) = 1$ and $cos(A-B) = \sqrt{3/2}$, $0^{\circ} < A+B \le 90^{\circ}$ and $A > B$, then find the measures of angles A and B.	2
	OR	
	Find an acute angle θ when $\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$	

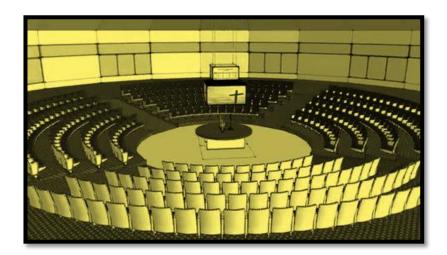
	SECTION C	
	Section C consists of 6 questions of 3 marks each.	
S.No	•	Marks
26	Given that $\sqrt{3}$ is irrational, prove that $5 + 2\sqrt{3}$ is irrational.	3
27	If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of the polynomial $2x^2 - 5x - 3$, then find the values of p and q.	3
28	A train covered a certain distance at a uniform speed. If the train would have been 6 km/h	3
	faster, it would have taken 4 hours less than the scheduled time. And, if the train were	
	slower by 6 km/hr; it would have taken 6 hours more than the scheduled time. Find the	
	length of the journey.	
	OR	
	Anuj had some chocolates, and he divided them into two lots A and B. He sold the first	
	lot at the rate of ₹2 for 3 chocolates and the second lot at the rate of ₹1 per chocolate, and	
	got a total of ₹400. If he had sold the first lot at the rate of ₹1 per chocolate, and the	
	second lot at the rate of ₹4 for 5 chocolates, his total collection would have been ₹460.	
	Find the total number of chocolates he had.	
29	Prove the following that-	3
	$\frac{\tan^3\theta}{1+\tan^2\theta} + \frac{\cot^3\theta}{1+\cot^2\theta} = \sec\theta \csc\theta - 2\sin\theta \cos\theta$	
30	Prove that a parallelogram circumscribing a circle is a rhombus	3
	OR	


	In the figure XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C interesting XY at A and X'Y' at B, what is the measure of ∠AOB.	
	X P A Y C X' Q B Y'	
31	Two coins are tossed simultaneously. What is the probability of getting (i) At least one head? (ii) At most one tail? (iii) A head and a tail?	3
	SECTION D	
N N T	Section D consists of 4 questions of 5 marks each.	3.6
5.No 32		Marks 5
, _	To fill a swimming pool two pipes are used. If the pipe of larger diameter used for 4 hours	
	and the pipe of smaller diameter for 9 hours, only half of the pool can be filled. Find, how	
	long it would take for each pipe to fill the pool separately, if the pipe of smaller diameter	
	takes 10 hours more than the pipe of larger diameter to fill the pool?	
	OR	
	In a flight of 600km, an aircraft was slowed down due to bad weather. Its average speed	
	for the trip was reduced by 200 km/hr from its usual speed and the time of the flight	
	increased by 30 min. Find the scheduled duration of the flight.	
33	Prove that if a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.	5
	Using the above theorem prove that a line through the point of intersection of the diagonals and parallel to the base of the trapezium divides the non parallel sides in the same ratio.	

34	Due to heavy floods in a	state, thousands v	were rendered	homeless. 50 schools	5	
	collectively decided to provide place and the canvas for 1500 tents and share the whole expenditure equally. The lower part of each tent is cylindrical with base					
	radius 2.8 m and height 3.5 m and the upper part is conical with the same base radius, but of height 2.1 m. If the canvas used to make the tents costs ₹120 per m²,					
	find the amount shared by	each school to se	et up the tents			
		OR	}			
	There are two identical solic	d cubical boxes of s	side 7cm. From	the top face of the first cube		
	a hemisphere of diameter ed	qual to the side of the	ne cube is scoop	ped out. This hemisphere is		
	inverted and placed on the to	op of the second cu	ıbe's surface to	form a dome. Find		
	(i) the ratio of the t	otal surface area of	the two new so	olids formed		
	(ii) volume of each	new solid formed.				
					5	
35	The median of the following data is 525. Find the values of x and y, if the total					
	frequency is 100		Γ_	1		
		Class interval	Frequency			
		0-100	2			
		100-200	5			
		200-300	X			
		300-400	12			
		400-500	17			
		500-600	20			
		600-700	у			
		700-800	9			
		800–900	7			
		900-1000	4			
I			<u> </u>			

	SECTION E	
	Case study based questions are compulsory.	
36	A tiling or tessellation of a flat surface is the covering of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. Historically, tessellations were used in ancient Rome and in Islamic art. You may find tessellation patterns on floors, walls, paintings etc. Shown below is a tiled floor in the archaeological Museum of Seville, made using squares, triangles and hexagons.	

A craftsman thought of making a floor pattern after being inspired by the above design. To ensure accuracy in his work, he made the pattern on the Cartesian plane. He used regular octagons, squares and triangles for his floor tessellation pattern

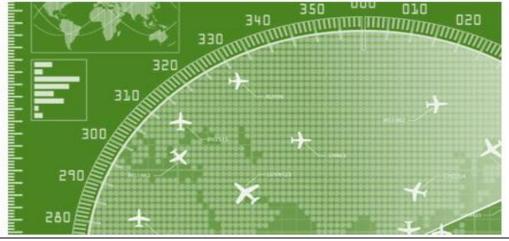


Use the above figure to answer the questions that follow:

- (i) What is the length of the line segment joining points B and F?
- (ii) The centre 'Z' of the figure will be the point of intersection of the diagonals of quadrilateral WXOP. Then what are the coordinates of Z?
- (iii) What are the coordinates of the point on y axis equidistant from A and G?

OR

What is the area of Trapezium AFGH?


- (i) If the first circular row has 30 seats, how many seats will be there in the 10th row?
- (ii) For 1500 seats in the auditorium, how many rows need to be there?

OR

If 1500 seats are to be arranged in the auditorium, how many seats are still left to be put after 10th row?

(iii) If there were 17 rows in the auditorium, how many seats will be there in the middle row?

We all have seen the airplanes flying in the sky but might have not thought of how they actually reach the correct destination. Air Traffic Control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled airspace. Actually, all this air traffic is managed and regulated by using various concepts based on coordinate geometry and trigonometry.

2

1

At a given instance, ATC finds that the angle of elevation of an airplane from a point on the ground is 60° . After a flight of 30 seconds, it is observed that the angle of elevation changes to 30° . The height of the plane remains constantly as $3000\sqrt{3}$ m. Use the above information to answer the questions that follow-

- (i) Draw a neat labelled figure to show the above situation diagrammatically.
- (ii) What is the distance travelled by the plane in 30 seconds?

OR

Keeping the height constant, during the above flight, it was observed that after $15(\sqrt{3} - 1)$ seconds, the angle of elevation changed to 45° . How much is the distance travelled in that duration.

(iii) What is the speed of the plane in km/hr.

1

1

2

SAMPLE QUESTION PAPER MARKING SCHEME SUBJECT: MATHEMATICS- STANDARD CLASS X

SECTION - A

1	(c) 35	1
2	(b) x^2 –(p+1)x +p=0	1
3	(b) 2/3	1
4	(d) 2	1
5	(c) (2,-1)	1
6	(d) 2:3	1
7	(b) tan 30°	1
8	(b) 2	1
9	(c) $x = \frac{ay}{a+b}$	1
10	(c) 8cm	1
11	(d) $3\sqrt{3}$ cm	1
12	(d) 9π cm ²	1
13	(c) 96 cm^2	1
14	(b) 12	1
15	(d) 7000	1
16	(b) 25	1
17	(c) 11/36	1
18	(a) 1/3	1
19	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)	1
20.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1

SECTION - B

21	Adding the two equations and dividing by 10, we get: $x+y = 10$	1/2
	Subtracting the two equations and dividing by -2 , we get: $x-y=1$	1/2
	Solving these two new equations, we get, $x = 11/2$	1/2
	y = 9/2	1/2
22	I AADG	
22	In $\triangle ABC$, $\angle 1 = \angle 2$	
	$\therefore AB = BD \dots (i)$	1/2
	Given, AD/AE = AC/BD	
	Using equation (i), we get	1/2
	AD/AE = AC/AB(ii) In \triangle BAE and \triangle CAD, by equation (ii),	
	AC/AB = AD/AE	1/2
	$\angle A = \angle A$ (common) $\therefore \Delta BAE \sim \Delta CAD$ [By SAS similarity criterion]	1/2
	ADAE ~ ACAD [by SAS similarity criterion]	/2
23	$\angle PAO = \angle PBO = 90^{\circ}$ (angle b/w radius and tangent)	1/2
	∠AOB = 105° (By angle sum property of a triangle)	1/2
	$\angle AQB = \frac{1}{2} \times 105^{\circ} = 52.5^{\circ}$ (Angle at the remaining part of the circle is half the	1
	angle subtended by the arc at the centre)	
24	We know that, in 60 minutes, the tip of minute hand moves 360°	
		1/2
	In 1 minute, it will move = $360^{\circ}/60 = 6^{\circ}$	
	∴ From 7:05 pm to 7:40 pm i.e. 35 min, it will move through = $35 \times 6^{\circ} = 210^{\circ}$	1/2
	: Area of swept by the minute hand in 35 min = Area of sector with sectorial angle θ	
	of 210° and radius of 6 cm	17
	$= \frac{210}{360} \times \pi \times 6^2$	1/2
	$= \frac{7}{12} \times \frac{22}{7} \times 6 \times 6$	
	=66cm ²	1/2

OR

Let the measure of $\angle A$, $\angle B$, $\angle C$ and $\angle D$ be θ_1 , θ_2 , θ_3 and θ_4 respectively Required area = Area of sector with centre A + Area of sector with centre B + Area of sector with centre D

	$= \frac{\theta_1}{360} \times \pi \times 7^2 + \frac{\theta_2}{360} \times \pi \times 7^2 + \frac{\theta_3}{360} \times \pi \times 7^2 + \frac{\theta_4}{360} \times \pi \times 7^2$	1/2
	$= \frac{(\theta_1 + \theta_2 + \theta_3 + \theta_4)}{360} \times \pi \times 7^2$ $= \frac{(360)}{360} \times \frac{22}{7} \times 7 \times 7 \text{ (By angle sum property of a triangle)}$ $= 154 \text{ cm}^2$	1/ ₂ 1/ ₂
25	$\sin(A+B) = 1 = \sin 90$, so $A+B = 90$	1/2 1/2 1/2 1/2
	$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$ Dividing the numerator and denominator of LHS by $\cos\theta$, we get $\frac{1 - \tan\theta}{1 + \tan\theta} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}}$ Which on simplification (or comparison) gives $\tan\theta = \sqrt{3}$ Or $\theta = 60^{\circ}$	1/2 1/2 1/2 1/2
26	SECTION - C Let us assume $5+2\sqrt{3}$ is rational, then it must be in the form of p/q where p and q are co-prime integers and $q \neq 0$	1
	i.e $5 + 2\sqrt{3} = p/q$ So $\sqrt{3} = \frac{p-5q}{2q}$ (i) Since p, q, 5 and 2 are integers and $q \neq 0$, HS of equation (i) is rational. But LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible.	1/2 1/2 1/2
	This contradiction has arisen due to our wrong assumption that $5 + 2\sqrt{3}$ is rational. So, $5 + 2\sqrt{3}$ is irrational.	1/2
27	Let α and β be the zeros of the polynomial $2x^2$ -5x-3 Then $\alpha + \beta = 5/2$ And $\alpha\beta = -3/2$. Let 2α and 2β be the zeros $x^2 + px + q$ Then $2\alpha + 2\beta = -p$ $2(\alpha + \beta) = -p$	1/2 1/2 1/2
	$2 \times 5/2 = -p$ So p = -5 And $2\alpha \times 2\beta = q$ $4 \alpha\beta = q$ So q = $4 \times -3/2$	1/2 1/2
	= -6	1/2

28 Let the actual speed of the train be x km/hr and let the actual time taken be y hours. 1/2 Distance covered is xy km If the speed is increased by 6 km/hr, then time of journey is reduced by 4 hours i.e., when speed is (x+6)km/hr, time of journey is (y-4) hours. \therefore Distance covered =(x+6)(y-4) \Rightarrow xy=(x+6)(y-4) \Rightarrow -4x+6y-24=01/2 \Rightarrow -2x+3y-12=0(i) Similarly xy=(x-6)(y+6) \Rightarrow 6x-6y-36=0 \Rightarrow x-y-6=0(ii) 1/2 Solving (i) and (ii) we get x=30 and y=24 Putting the values of x and y in equation (i), we obtain Distance = (30×24) km =720km. 1/2 Hence, the length of the journey is 720km. OR Let the number of chocolates in lot A be x 1/2 And let the number of chocolates in lot B be y \therefore total number of chocolates =x+y Price of 1 chocolate = $\mathbf{\xi}$ 2/3, so for x chocolates = $\frac{2}{3}$ x and price of y chocolates at the rate of $\mathbf{\xi}$ 1 per chocolate =y. \therefore by the given condition $\frac{2}{3}x + y = 400$ 1/2 \Rightarrow 2x+3y=1200(i) Similarly $x + \frac{4}{5}y = 460$ 1/2 ⇒5x+4y=2300(ii) Solving (i) and (ii) we get x = 300 and y = 2001 x+y=300+200=500So, Anuj had 500 chocolates. 1/2 LHS: $\frac{\sin^3\theta/\cos^3\theta}{1+\sin^2\theta/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{1+\cos^2\theta/\sin^2\theta}$ 29 1/2

$$= \frac{\sin^3\theta/\cos^3\theta}{(\cos^2\theta + \sin^2\theta)/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{(\sin^2\theta + \cos^2\theta)/\sin^2\theta}$$

$$= \frac{\sin^3\theta}{\cos^3\theta} + \frac{\cos^3\theta}{\sin^3\theta}$$

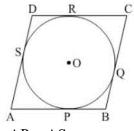
$$= \frac{\sin^4\theta + \cos^4\theta}{\cos^3\theta\sin^3\theta}$$

$$= \frac{(\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta}{\cos^3\theta\sin^3\theta}$$

$$= \frac{1 - 2\sin^2\theta\cos^2\theta}{\cos^3\theta\sin^3\theta}$$

$$= \frac{1 - 2\sin^2\theta\cos^2\theta}{\cos^3\theta\sin^3\theta}$$

$$= \frac{1}{\cos^3\theta\sin^3\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos^3\theta\sin^3\theta}$$


$$= \sec^3\theta\cos^3\theta - 2\sin^3\theta\cos^3\theta$$

$$= \sec^3\theta\cos^3\theta - 2\sin^3\theta\cos^3\theta$$

$$= \sec^3\theta\cos^3\theta - 2\sin^3\theta\cos^3\theta$$

$$= \sec^3\theta\cos^3\theta - 2\sin^3\theta\cos^3\theta$$

30

Let ABCD be the rhombus circumscribing the circle with centre O, such that AB, BC, CD and DA touch the circle at points P, Q, R and S respectively.

We know that the tangents drawn to a circle from an exterior point are equal in length.

We know that the tangents drawn to a circle from an exterior point are equal in length.

∴
$$AP = AS$$
......(1)

 $BP = BQ$(2)

 $CR = CQ$(3)

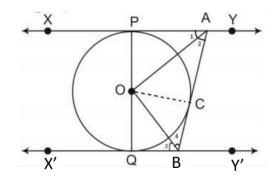
 $DR = DS$(4).

Adding (1), (2), (3) and (4) we get

 $AP+BP+CR+DR = AS+BQ+CQ+DS$
 $(AP+BP) + (CR+DR) = (AS+DS) + (BQ+CQ)$

∴ $AB+CD=AD+BC$ ------(5)

Since $AB=DC$ and $AD=BC$ (opposite sides of parallelogram $ABCD$)


putting in (5) we get, $2AB=2AD$

or $AB = AD$.

∴ $AB=BC=DC=AD$

Since a parallelogram with equal adjacent sides is a rhombus, so ABCD is a 1/2 rhombus

OR

Join OC

In \triangle OPA and \triangle OCA

OP = OC (radii of same circle)

PA = CA (length of two tangents from an external point)

AO = AO (Common)

Therefore, \triangle OPA \cong \triangle OCA (By SSS congruency criterion)

1

1/2

Hence, $\angle 1 = \angle 2$ (CPCT)

Similarly $\angle 3 = \angle 4$

 $\angle PAB + \angle QBA = 180^{\circ}$ (co interior angles are supplementary as $XY \parallel X'Y'$)

 $2\angle 2 + 2\angle 4 = 180^{\circ}$

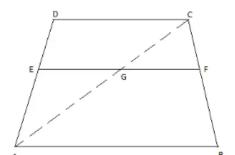
$$\angle 2 + \angle 4 = 90^{\circ}$$
 (1)

 $\angle 2 + \angle 4 + \angle AOB = 180^{\circ}$ (Angle sum property)

Using (1), we get, $\angle AOB = 90^{\circ}$

31 (i) P (At least one head) = $\frac{3}{4}$

(ii) P(At most one tail) = $\frac{3}{4}$


(iii) P(A head and a tail) = $\frac{2}{4} = \frac{1}{2}$

SECTION D

32 Let the time taken by larger pipe alone to fill the tank= x hours Therefore, the time taken by the smaller pipe = x+10 hours

Water filled by larger pipe running for 4 hours = $\frac{4}{x}$ litres Water filled by smaller pipe running for 9 hours = $\frac{9}{x+10}$ litres

We know that	
$\frac{4}{x} + \frac{9}{x+10} = \frac{1}{2}$	1
x = x+10 = 2 Which on simplification gives:	
$x^2-16x-80=0$	1
$x^2-20x+4x-80=0$	
x(x-20) + 4(x-20) = 0	
(x + 4)(x-20) = 0	1
x=-4,20	1
x cannot be negative.	1/2
Thus, x=20	1/2
x+10=30	
Larger pipe would alone fill the tank in 20 hours and smaller pipe would fill the tank alone in 30 hours.	1/2
OR	
Let the usual speed of plane be x km/hr	1/2
and the reduced speed of the plane be (x-200) km/hr	
Distance =600 km [Given]	
According to the question,	
(time taken at reduced speed) - (Schedule time) = $30 \text{ minutes} = 0.5 \text{ hours}$.	1
600 600 1	1
$\frac{600}{x-200} - \frac{600}{x} = \frac{1}{2}$	
Which on simplification gives:	1
x ² - 200x-240000=0	•
$x^2 - 600x + 400x - 240000 = 0$	
x(x-600) + 400(x-600) = 0 (x-600)(x+400) = 0	
x=600 or x=-400	1
But speed cannot be negative.	1/2
∴ The usual speed is 600 km/hr and	1/2
the scheduled duration of the flight is $\frac{600}{600}$ =1hour	1/2
For the Theorem:	
Given, To prove, Construction and figure	11/2
Proof	
	11/2

Let ABCD be a trapezium DC||AB and EF is a line parallel to AB and hence to DC.

To prove : $\frac{DE}{EA} = \frac{CF}{FB}$

Construction: Join AC, meeting EF in G.

Proof:

In \triangle ABC, we have

GF||AB

CG/GA=CF/FB [By BPT](1)

In \triangle ADC, we have

EG||DC (EF ||AB & AB ||DC)

DE/EA= CG/GA [By BPT](2)

From (1) & (2), we get, $\frac{DE}{EA} = \frac{CF}{FB}$ ¹/₂

34. Radius of the base of cylinder (r) = 2.8 m = Radius of the base of the cone (r)

Height of the cylinder (h)=3.5 m

Height of the cone (H)=2.1 m.

Slant height of conical part (1)= $\sqrt{r^2+H^2}$

 $=\sqrt{(2.8)^2+(2.1)^2}$

 $=\sqrt{7.84+4.41}$

 $=\sqrt{12.25}=3.5 \text{ m}$

Area of canvas used to make tent = CSA of cylinder + CSA of cone

 $=2\times\pi\times2.8\times3.5+\pi\times2.8\times3.5$

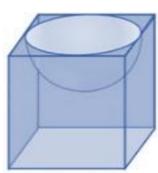
=61.6+30.8

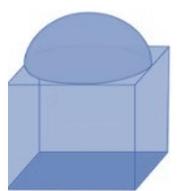
 $=92.4m^2$

1

Cost of 1500 tents at ₹120 per sq.m

 $= 1500 \times 120 \times 92.4$


= 16,632,000


Share of each school to set up the tents = 16632000/50 = ₹332,640

OR

First Solid

Second Solid

(i) SA for first new solid (S1): $6\times7\times7+2~\pi\times3.5^2-\pi\times3.5^2$

$$6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$$

$$=294+77-38.5$$

 $= 332.5 \text{cm}^2$

SA for second new solid (S2):

$$6 \times 7 \times 7 + 2 \pi \times 3.5^2 - \pi \times 3.5^2$$

$$=294+77-38.5$$

 $= 332.5 \text{ cm}^2$

So S_1 : $S_2 = 1:1$

Volume for first new solid (V₁)= $7 \times 7 \times 7 - \frac{2}{3}\pi \times 3.5^3$ = $343 - \frac{539}{6} = \frac{1519}{6}$ cm³ Volume for second new solid (V₂)= $7 \times 7 \times 7 + \frac{2}{3}\pi \times 3.5^3$ = $343 + \frac{539}{6} = \frac{2597}{6}$ cm³ (ii)

$$= 343 - \frac{539}{6} = \frac{1519}{6} \text{ cm}^3$$

$$=343 + \frac{539}{6} = \frac{2597}{6} \text{ cm}^3$$

Median = 525, so Median Class = 500 - 60035

1.	4
7	Z

1

1

1

1

1

Class interval	Frequency	Cumulative Frequency
0-100	2	2
100-200	5	7
200-300	X	7+x
300-400	12	19+x
400-500	17	36+x
500-600	20	56+x
600-700	у	56+x+y
700-800	9	65+x +y
800-900	7	72+x+y
900-1000	4	76+x+y

11/2

$$76+x+y=100 \Rightarrow x+y=24 \dots (i)$$

1

1/2

$$Median = 1 + \frac{\frac{n}{2} - cf}{f} \times h$$

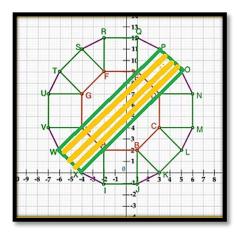
Since, l=500, h=100, f=20, cf=36+x and n=100

Therefore, putting the value in the Median formula, we get;

$$525 = 500 + \frac{50 - (36 + x)}{20} \times 100$$

so x = 9

y = 24 - x (from eq.i)


$$y = 24 - 9 = 15$$

Therefore, the value of x = 9

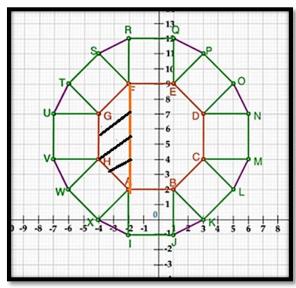
1/2 1/2 and y = 15.

36 (i)
$$B(1,2)$$
, $F(-2,9)$
 $BF^2 = (-2-1)^2 + (9-2)^2$
 $= (-3)^2 + (7)^2$
 $= 9 + 49$
 $= 58$
So, $BF = \sqrt{58}$ units

(ii)

Clearly WXOP is a rectangle

Point of intersection of diagonals of a rectangle is the mid point of the diagonals. So the required point is mid point of WO or XP


$$= \left(\frac{-6+5}{2}, \frac{2+9}{2}\right)$$

$$= \left(\frac{-1}{2}, \frac{11}{2}\right)$$

(iii) A(-2,2), G(-4,7)
Let the point on y-axis be
$$Z(0,y)$$
 $\frac{1}{2}$
 $AZ^2 = GZ^2$ $\frac{1}{2}$

$$(0+2)^2 + (y-2)^2 = (0+4)^2 + (y-7)^2$$

 $(2)^2 + y^2 + 4 - 4y = (4)^2 + y^2 + 49 - 14y$
 $8-4y = 65-14y$
 $10y = 57$
So, $y = 5.7$
i.e. the required point is $(0, 5.7)$

OR

A(-2,2), F(-2,9), G(-4,7), H(-4,4)
Clearly GH = 7-4=3units
AF = 9-2=7 units
So, height of the trapezium AFGH = 2 units
So, area of AFGH =
$$\frac{1}{2}$$
(AF + GH) x height
= $\frac{1}{2}$ (7+3) x 2
= 10 sq. units

37. (i) Since each row is increasing by 10 seats, so it is an AP with first term a= 30, and common difference d=10.

So number of seats in 10^{th} row = a_{10} = a+ 9d = $30 + 9 \times 10 = 120$

$$= 30 + 9 \times 10 = 120$$

(ii)
$$S_n = \frac{n}{2}(2a + (n-1)d)$$

 $1500 = \frac{n}{2}(2 \times 30 + (n-1)10)$
 $3000 = 50n + 10n^2$
 $n^2 + 5n - 300 = 0$

$$n^2 + 20n - 15n - 300 = 0$$

 $(n+20) (n-15) = 0$

(n+20) (n-15) = 0Rejecting the negative value, n=15

OR

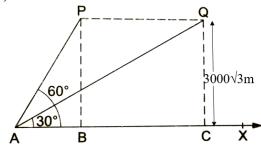
No. of seats already put up to the
$$10^{th}$$
 row = S_{10}
$$S_{10} = \frac{10}{2} \left\{ 2 \times 30 + (10\text{-}1)10 \right\}$$
 \frac{1}{2}

So, the number of seats still required to be put are
$$1500 - 750 = 750$$

(iii) If no. of rows = 17

then the middle row is the 9th row

 $a_8 = a + 8d$
 $= 30 + 80$

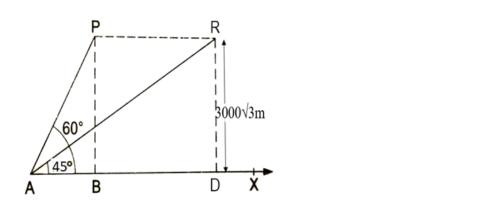

1/2

1/2

1

1/2

38 (i)


= 5(60 + 90) = 750

= 110 seats

P and Q are the two positions of the plane flying at a height of $3000\sqrt{3}$ m. A is the point of observation.

(ii) In
$$\triangle$$
 PAB, $\tan 60^{\circ}$ =PB/AB
Or $\sqrt{3} = 3000\sqrt{3}$ / AB
So AB=3000m 1
 $\tan 30^{\circ}$ = QC/AC 1/ $\sqrt{3} = 3000\sqrt{3}$ / AC AC = 9000m 1/2 distance covered = 9000- 3000 = 6000 m. 1/2

OR

In \triangle PAB, $\tan 60^{\circ}$ =PB/AB Or $\sqrt{3}$ = 3000 $\sqrt{3}$ / AB So AB=3000m $\tan 45^{\circ}$ = RD/AD 1= 3000 $\sqrt{3}$ / AD

AD = $3000\sqrt{3}$ m distance covered = $3000\sqrt{3}$ - 3000 = $3000(\sqrt{3}$ - 1)m.	1/2
(iii) speed = 6000/30	1/2
=200 m/s	
$= 200 \times 3600/1000$	1/2
=720km/hr	
Alternatively: speed = $\frac{3000(\sqrt{3}-1)}{15(\sqrt{3}-1)}$	1/2
= 200 m/s	/2
$= 200 \times 3600/1000$	1/
	1/2
= 720km/hr	