JSIJIL TUTOBRI ACBSE Coaching for O(athematics and Science

10th Maths Sample Paper-2 (CBSE Board Exam 2018)

Time Allowed: 3 Hours
Max. Marks: 80
Section A Questions from 1 to 6 carry 1 mark each.

1. Given positive integers a and b, there exist unique integers q and r satisfying $a=b q+r$. Write the range of r.
2. If the centroid of a triangle formed by points (a, b), (b, c) and ($c, a)$ is $(0,0)$, then find $a^{3}+b^{3}+c^{3}$.
3. $A B$ and $C D$ are two common tangents to circles which touch each other at C. If D lies on $A B$ such that $C D=4 \mathrm{~cm}$, then what is the length of $A B$?
4. If $\sin \theta+\sin ^{2} \theta=1$, prove that $\operatorname{cost}^{2} \theta+\cos ^{4} \theta=1$.
5. If $\cos A=3 / 5$, find $9 \cot ^{2} A-1$.
6. A dice is tossed once. What is the probability of getting a number greater than 5 ?

Section B Questions from 7 to 12 carry 2 marks each.
7. If $\operatorname{HCF}(a, b)=12$ and $a \times b=1800$, find the $\operatorname{LCM}(a, b)$.
8. Find the zeros of $4 x^{2}-7$ and verify the relationship between the zeros and its coefficients.
9. Find the roots of the following quadratic equation: $3 x-\frac{8}{x}=2$
10. The 5th and 15 th terms of an A.P. are 13 and -17 respectively. Find the sum of first 21 terms of the A.P.
11. The centre of a circle is $(2 a+3,2 a-1)$. Find the value of a if the circle passes through the point $(11,9)$ and has diameter of length 20 units.
12. In $\triangle A B C, A D \perp B C$. If $B D=8 \mathrm{~cm}, D C=2 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, then show that $\triangle A B C$ is right-angled at A.

Section C Questions from 13 to 22 carry 3 marks each.
13. In a single throw of two dice, what is the probability of getting:
(i) a total of 9 or 11, (ii) the product of two numbers as 6 (iii) the sum of the two numbers as even?
14. Find the median of the following frequency distributions

Class interval	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$	$55-60$
Frequency	12	16	8	10	8	2	4

15. The radii of circular ends of a solid frustum of a cone are 33 cm and 27 cm and its slant height in 10 cm . Find its total surface area. (Take $\pi=3.14$)
16. In the given figure, there are sectors of two concentric circles of radii 7 cm and 3.5
cm . Find the area of shaded region.
17. Simplify: $\left(\sec ^{2} \theta+\tan ^{2} \theta\right)^{2}-4 \sec ^{2} \theta \tan ^{2} \theta$
18. If $\sec \theta+\tan \theta=4$, then find the values of $\cos \theta, \tan \theta$ and $\sin \theta$.
19. The line segment joining the points $A(3,2)$ and $B(5,1)$ is divided at the point P in ratio $1: 2$ and it lies on the line $3 x-18 y+k=0$. Find the value of k.

20. The 24 th term of an A.P. is twice its 10 th term. Show that its 72 nd term is 4 times its 15 th term.
21. Using Euclid's Division Lemma show that the square of any odd integer is always of the form $4 \mathrm{~m}+1$, for some integer m .

JSIJIL TUMOBRI ACBSE Coaching for O(Xathematics and Science

22. Verify that $-2,1$ and -2 are the zeros of the polynomial $2 x a+x^{2}-5 x+2$. Also, verify the relationship between the zeros and the coefficients.

Section D Questions from 23 to 30 carry 4 marks each.
23. Solve for x and $\mathrm{y}: \frac{x}{6}+\frac{y}{4}=1 ; \frac{3 x}{4}-\frac{x-3}{2}=7 / 4$
24. A train travels at a certain average speed for a distance of 63 km and then travels a distance of 72 km at an average speed of $6 \mathrm{~km} / \mathrm{h}$ more than its original speed. If it takes 3 hours to complete the total journey, what is its original average speed?
25. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Use it to prove the following: The sum of the squares of the diagonals of a rhombus is equal to four times square of its any side.
26. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact. Using this result prove the following: In the figure given below, OA and $O B$ are two radii of the circle. If $P A$ and $P B$ are tangents to the circle at A and B respectively, prove that $<$ AOB and $<$ APB are supplementary.

27. Draw a triangle with sides $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm . Then construct a triangle similar to it whose sides are $\frac{2}{3}$ rd of the corresponding sides of the given triangle.
OR,
Draw a quadrilateral $A B C D$ with $A B=3 \mathrm{~cm}, A D=2.7 \mathrm{~cm}, \mathrm{DB}=3.6 \mathrm{~cm}, \angle \mathrm{~B}=110^{\circ}$ and $B C=4.2 \mathrm{~cm}$. Construct a quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with each side equal to $\frac{4}{5} t h$ of the corresponding side of quadrilateral $A B C D$
Hint: Solution: First draw a quadrilateral $A B C D$ in which and join $A C$. Construct the triangle $A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with scale factor $\frac{4}{5}$. Finally draw the line
 segment C'D' parallel to $C D$.
28. From a window 60 metres high above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are 60° and 45° respectively. Show that the height of the opposite house is $60(1+\sqrt{3})$ metres.
29. From a solid cylinder of height 8 cm and base radius 6 cm , a conical cavity of height 8 cm and base radius 6 cm is hollowed out. Find the total volume of the remaining solid correct to two places of decimal. Also, find the total surface area of the remaining solid. (Take $\pi=3.1416$)
30. Find the 'mean' and 'mode' for the following data:

Age (in years)	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Number of Patients	6	11	21	23	14	5

In this distribution, people of which age group attach less value to being healthy?

