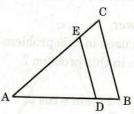


Mathematics Sample Paper

Sample Question Paper — 3

SECTION - A

- 1. If the HCF of 65 and 117 is expressible in the form of 65m 117, then find the value of m.
- 2. What is the value of k, for equations 2x + ky = 7, 4x + 8y = 14 will represent coincident lines.
- **3.** In the figure, DE || BC. If AD = x, DB = x 2, AE = x + 2 and EC = x 1, then find the value of x.



4. For the following distribution :

Classes	10 - 15	15 - 20	20-25	25 - 30	30-35
Frequency	25	30	27	35	21

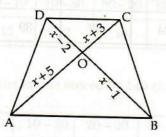
Find the sum of the lower limit of the median class and the lower limit of the modal class.

SECTION - B

- 5. If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of $2x^2 5x 3$. Find the value of p and q.
- 6. Solve the following system of linear equations by substitution method :

2x - y = 2x + 3y = 15.

7. In the given figure, if AB \parallel DC, find the value of x.



- 8. Express $\cos 68^\circ + \tan 76^\circ$ in the terms of the angles between 0° and 45° .
- 9. If $\tan (A + B) = \sqrt{3}$, $\tan (A B) = \frac{1}{\sqrt{3}}$, $0^{\circ} < A + B < 90^{\circ}$ and A > B, then find A and B.
- 10. Convert the following distribution to a more than type cumulative frequency distribution :

60 - 70	70-80	80 - 90	90-100
18	10	15	5

Mathematics Sample Paper

- 11. Three bells toll at intervals of 9, 12, 15 minutes respectively. If they start tolling together, after what time will they next toll together.
- 12. Find the HCF and LCM of 510 and 92 and verify that :

HCF × LCM = Product of two given numbers.

SECTION - C

- 13. If α and β are the zeroes of a quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha \beta = 8$. Find the quadratic polynomial having α and β as its zeroes. Verify the relationship between the zeroes and coefficients of the polynomial.
- 14. The well monitored total expenditure per month of a household consists of a fixed rent of the house and mess expenditure depending upon the number of people sharing the house. The total monthly expenditure is ₹ 3900 for 2 people and ₹ 7500 for 5 people. Find the rent of the house and the mess expenditure per head per month.

15. In the given figure, $\frac{PS}{SQ} = \frac{PT}{TR}$ and $\angle PST = \angle PRQ$. Prove that PQR is an isosceles triangle.



16. Prove that the sum of squares on the sides of a rhombus is equal to sum of squares on its diagonals.

17. Simplify:
$$\frac{\sin \theta \sec (90^\circ - \theta) \tan \theta}{\csc (90^\circ - \theta) \cos \theta \cot (90^\circ - \theta)} - \frac{\tan (90^\circ - \theta)}{\cot \theta}$$

18. Find the value of sin 60° geometrically.

19. If the mean of the following data is 14.7, find the values of p and q.

Classes	0-6	6-12	12-18	18 - 24	24-30	30 - 36	36 - 42	Total
Frequency	10	p	4	7	q	4	1	40

20. Write the relationship connecting three measures of central tendencies. Hence find the median of the given data if mode is 24.5 and mean is 29.75.

SECTION - D

- **21.** For any positive integer *n*, prove that $n^3 n$ is divisible by 6.
- 22. If the polynomial $f(x) = 3x^4 + 3x^3 11x^2 5x + 10$ is completely divisible by $3x^2 5$, find all its zeroes.
- 23. Solve the following pair of linear equations graphically :

 $\begin{aligned} x - y &= 1\\ 2x + y &= 8. \end{aligned}$

Also find the co-ordinates of the points where the lines, represented by the above equation, intersect *y*-axis.

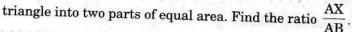
24. Draw the graphs of following equations :

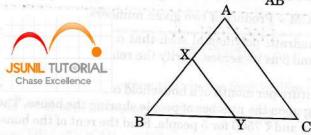
$$2x - y = 1, x + 2y = 13.$$

Find the solution of the equations from the graph and shade the triangular region formed by the lines and the *y*-axis.

Mathematics Sample Paper

- 25. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio. Prove it.
- 26. In the given figure, the line segment XY is parallel to the side AC of \triangle ABC and it divides the





- **27.** If $\cos \theta + \sin \theta = p$ and $\sec \theta + \csc \theta = q$, prove that $q(p^2 1) = 2p$.
- **28.** Prove that : $(\sin A + \sec A)^2 + (\cos A + \csc A)^2 = (1 + \sec A \csc A)^2$.
- **29.** If $\sqrt{3} \cot^2 \theta 4 \cot \theta + \sqrt{3} = 0$, then find the value of $\cot^2 \theta + \tan^2 \theta$.
- **30.** The following table shows the age distribution of cases of a certain disease (caused due to spread of a virus) admitted during a year in a particular hospital :

Classes	5-14	15-24	25-34	35 - 44	45 - 54	55 - 64
Frequency	6	11	21	23	14	
In the set of a pres	In Station in the		- 21	23	14	5

- (i) Find the average age for which maximum cases occured ?
- (ii) Which mathematical concept is used in this problem.
- (iii) What is its value ?
- 31. Draw a more than ogive for the following data :

Classes	0-10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
Frequency	5	9	10	12	8	7	5	10 00
Ca		0	10	12	8	7		5

ACBSE Coaching for Mathematics and Science

10th Mathematics Solution Sample paper -03

SECTION - A

	-		
1.	65	= 13 × 5	
	and 117	= 13 × 9	
	Hence, HCF	= 13	
	According to question $65m - 117$	= 13	
	\Rightarrow 65m	= 13 + 117 = 130	
	\Rightarrow m	$=\frac{130}{65}=2.$	1
2.	For coincident lines		
	a_1	$b_1 c_1$	
	$\frac{1}{a_2}$	$=\frac{b_1}{b_2}=\frac{c_1}{c_2}$	
	2	k 7	
	$\Rightarrow \frac{-}{4}$	$=\frac{k}{8}=\frac{7}{14}$	
	\Rightarrow k	= 4.	1
3.	In the \triangle ABC,		
		BC (given)	
	$\therefore \qquad \qquad \frac{AD}{DB}$	$= \frac{AE}{EC} \qquad (By B.PT)$	
	$\Rightarrow \frac{x}{x-2}$	$=\frac{x+2}{x-1}$	
		= (x - 2) (x + 2)	
		$= x^2 - 4$ A B	
	\Rightarrow x	= 4.	1
4.	In the distribution, Median class	= 20 - 25	
	Hence, Lower limit of median class	= 20	
	and Model class	= 25 - 30	
	So, Lower limit of modal class	= 25	
	Sum of lower limit of median class and	lower limit of modal class = $25 + 20 = 45$.	1
	S	ECTION – B	
5.	Let, $f(x)$	$=2x^2-5x-3$	

Let the zeroes of polynomial are α and β , then

Sum of zeroes
$$\alpha + \beta = \frac{5}{2}$$
, product of zeroes $\alpha\beta = -\frac{3}{2}$

According to question, zeroes of $x^2 + px + q$ are 2α and 2β

Sum of zeroes
$$= -\frac{\text{coeff. of } x}{\text{coeff. of } x^2} = \frac{-p}{1}$$

 $= 2\alpha + 2\beta = 2 (\alpha + \beta) = 2 \times \frac{5}{2} = 5 \Rightarrow p = -5$

1

Product of zeroes =
$$\frac{Constant}{Coeff. of x^2} = \frac{q}{1}$$

= $2\alpha \times 2\beta = 4\alpha\beta = 4\left(-\frac{3}{2}\right) = -6$
 \therefore $p = -5 \text{ and } q = -6.$ 1
 $2\alpha - y = 2$
 \Rightarrow $y = 2x - 2$...(i)
 $x + 3y = 15$...(ii)
Substituting the value of y from (i) in (ii), we get
 $x + 6x - 6 = 15$ 1
 \Rightarrow $7x = 21$
 \Rightarrow $x = 3$
From (i), $y = 2 \times 3 - 2 = 4$
 \therefore $x = 3 \text{ and } y = 4.$ 1
Since the diagonals of a trapezium divide each other proportionally, we have
 $\frac{OA}{OC} = \frac{BO}{OD}$
 \Rightarrow $\frac{x + 5}{x + 3} = \frac{x - 1}{x - 2}$ $\int_{A}^{A} \int_{A}^{A} \int_{B}^{A} \int$

$$A - B = 30^{\circ} (\because A > B)$$
 ...(ii)¹/₂

 $Adding \ equations \ (i) \ and \ (ii), we \ get$

$$2\mathbf{A} = 90^{\circ} \Rightarrow \mathbf{A} = \frac{90^{\circ}}{2} = 45^{\circ}$$

Putting this value of A in equation (i), we get

$B = 60^{\circ} - A = 60^{\circ} - 45^{\circ} = 15^{\circ}$
$A = 45^{\circ}$ and $B = 15^{\circ}$

1

Hence,		A = 45° and B = 15° .
).	Class	Cumulative frequency
	More than 50	60
	More than 60	48
	More than 70	30
	More than 80	20
	More than 90	5

10.

 \Rightarrow

 $\mathbf{2}$

SECTION - C

11.	The bells will next full to gether after time equal to LCM (9, 12, 15)	1
	To find L.C.M. (9, 12, 15).	
	$9 = 3 \times 3$	
	$12 = 2 \times 2 \times 3$	
	$15 = 3 \times 5$	1
	$\therefore \qquad \text{L.C.M.} = 3 \times 3 \times 2 \times 2 \times 5 = 180 \text{ minutes}$	
	The bells will toll together after 180 minutes.	1
12.	By Euclid's division algorithm, $510 = 92 \times 5 + 50$	
	$92 = 50 \times 1 + 42$	
	$50 = 42 \times 1 + 8$	
	$42 = 8 \times 5 + 2$	1
	$8 = 2 \times 4 + 0.$	
	HCF(510, 92) = 2	
	$92 = 2^2 \times 23$	
	$510 = 2 \times 3 \times 5 \times 17$	
	LCM = $2^2 \times 23 \times 3 \times 5 \times 17 = 23460$	
	$HCF \times LCM = 2 \times 23460 = 46920$	1
	Product of two given numbers $= 510 \times 92$	1
		1
13.		1
	$\alpha + \beta = 24$	(i)
	$\alpha - \beta = 8$	(ii)
	Adding equations (i) and (ii), we get 2a = 32	
	\Rightarrow $a = 16$	
	Put the value of α in equation (i)	
	$16 + \beta = 24$ $\beta = 24 - 16 = 8$	1
	p = 24 - 10 = 8 Hence, the quadratic polynomial is $= x^2 - (\text{Sum of zeroes}) x + (\text{Product of zeroes})$	1
	$= x^2 - (\alpha + \beta)x + \alpha\beta$	
	$= x^2 - (16 + 8) x + (16) (8)$	
	$= x^2 - 24x + 128$	
	Verification : $\alpha + \beta = \frac{-b}{a} = -\frac{\text{Coeff. of } x}{\text{Coeff. of } x^2}$	
	$\Rightarrow \qquad \qquad 24 = -\left(-\frac{24}{1}\right)$	1
	and $\alpha\beta = \frac{c}{a} = \frac{\text{Constant}}{\text{Coeff. of }x^2}$	
	$\Rightarrow \qquad 128 = \frac{128}{1}$	
	Hence, the relationship is verified .	1

14. Let the monthly rent of the house be \mathbf{x} and the mess expenditure per head per month be \mathbf{x} . According to the given condition,

$$x + 2y = 3900$$
 ...(i)

$$x + 5y = 7500$$
 ...(ii) 1

Subtracting equation (ii) from equation (i), we get

$$-3y = -3600$$
$$y = \frac{3600}{3} = 1200$$
1

Putting this value of y in eqn. (i), we get

$$x + 2400 = 3900$$
$$x = 3900 - 2400$$
$$= 1500$$

Hence, monthly rent = ₹ 1500 and mess expenditure per head per month = ₹ 1200.

 $\frac{\text{PS}}{\text{SQ}} = \frac{\text{PT}}{\text{TR}}$ 15. Given: $\angle PST = \angle PRQ$ To prove : ΔPQR is isosceles triangle. $\frac{PS}{SQ} = \frac{PT}{TR}$ \mathbf{PS} **Proof**: ΔR By converse of B.P.T., we get ST || QR 1 $\angle PST = \angle PQR$ (Corresponding angles)1 *:*. $\angle PST = \angle PRQ$ *.*•. (Given) But $\angle PQR = \angle PRQ$

So, $\triangle PQR$ is an isosceles triangle.

16. ABCD is a rhombus, \therefore AO = OC = x (say), BO = OD = y (say) and $\angle AOB = 90^{\circ}$

 \Rightarrow

 \Rightarrow

 \Rightarrow

 $AB^2 = OA^2 + BO^2 = x^2 + y^2$ (By Pythagoras theorem)

1

1

1

1

1

Proved

1

Similarly,

$$AD^{2} = x^{2} + y^{2} = BC^{2} = CD^{2}$$

$$AB^{2} + BC^{2} + CD^{2} + DA^{2} = 4(x^{2} + y^{2})$$

$$= (2x)^{2} + (2y)^{2}$$

$$= AC^{2} + BD^{2}$$
We know that,

$$Proved.$$

17. We know that,

 $\sec (90^\circ - \theta) = \csc \theta$, $\tan (90^\circ - \theta) = \cot \theta$, $\cot (90^\circ - \theta) = \tan \theta$, $\csc (90^\circ - \theta) = \sec \theta$

Hence,
$$\frac{\sin\theta.\sec(90^{\circ}-\theta)\tan\theta}{\csc(90^{\circ}-\theta)\cos\theta.\cot(90^{\circ}-\theta)} - \frac{\tan(90^{\circ}-\theta)}{\cot\theta} = \frac{\sin\theta.\csc\theta.\tan\theta}{\sec\theta.\cos\theta.\tan\theta} - \frac{\cot\theta}{\cot\theta}$$

$$=\frac{\sin\theta\times\frac{1}{\sin\theta}\times\tan\theta}{\frac{1}{\cos\theta}\times\cos\theta.\tan\theta}-1=1-1=0.$$

18. Let $\triangle ABC$ is an equilateral triangle, and

18.	Let $\triangle ABC$	C is an equilateral	triangle, and AB = BC = A	C - 2a		
			AD = DC = A $AD \perp BC$	c - 2a		
	AD is als	o median. In equi	lateral \triangle ABC			
			CD = a = BD		A A	1
	In AADC		$\angle A = \angle B = \angle A = 2a$.0 = 00		1
		7	DC = a			
	<i>.</i> .		AD = $\sqrt{(2a)^2}$	$-(a)^2 = \sqrt{3a^2}$		1
			$=\sqrt{3}a$		60°	
	<i>.</i>		$\sin 60^\circ = \frac{AD}{AC} = -$	$\sqrt{3a}$ B	D C	
	••		AC	2a		
	<i>:</i> .		$\sin 60^\circ = \frac{\sqrt{3}}{2}$			1
			2			7
19.		Classes	x _i	f_i	$x_i f_i$	-
		0 - 6	3	10	30	
		6 - 12	9	р	9p	
		12 - 18	15	4	60	
		18-24	21	7	147	
		24 - 30	27	q	27q	
		30 - 36	33	4	132	
	-	36 - 42	39	1	39	-
			Total	$\mathbf{S}f_i = 26 + p + q$	$\mathbf{S}x_i f_i = 408 + 9p + 27q$	
	Given,		$\Sigma f_i = 40,$			
	\Rightarrow		26 + p + q = 40		,	• \ • /
	\Rightarrow		$p + q = 14$ $\sum r \cdot f \cdot$		(1	i) ½
	.:.		Mean, $\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$			1⁄2
			$14.7 = \frac{408 + 9}{2}$	$\frac{9p+27q}{40}$		
			588 = 408 + 9	p + 27q		1
			180 = 9p + 27 $p + 3q = 20$	q		.(ii)
	Subtract	ing eq. (i) from eq			•••	.(11)
			2q = 6			1/
	\Rightarrow Putting t	this value of q in e	q = 3			$\frac{1}{2}$
	0	1		= 14 - 3 = 11		1⁄2
20.		g to question	mode = 24.5			
	and	. 1	mean = 29.75	, , , , ,		
	The relat	tionship connectin	ag measures of central 3 Median = Mode +			1
			3 Median = 24.5 + 2			T
			= 24.5 + 8			1
			3 Median = 84.0			
	<i>.</i>		Median = $\frac{84}{3}$ = 2	8.		1
			0			

SECTION - D

21.

 $n^3 - n \ = n(n^2 - 1) = n(n+1) \, (n-1) = (n-1) \, n(n+1)$

= product of three consecutive positive integers.

Now, we have to show that the product of three consecutive positive integers is divisible by 6. We know that any positive integer a is of the form 3q, 3q + 1 or 3q + 2 for some positive integer q. Let a, a + 1, a + 2 be any three consecutive integers. **Case I.** If a = 3q.

$$\begin{aligned} a(a+1)\,(a+2) &= 3q(3q+1)\,(3q+2) \\ &= 3q\;(\text{even number, say}\,2r) = 6qr, \end{aligned}$$

(:: Product of two consecutive integers (3q + 1) and (3q + 2) is an even integer) which is divisible by 6.

Case II. If

$$a = 3q + 1.$$

 $a(a + 1) (a + 2) = (3q + 1) (3q + 2) (3q + 3)$
 $= (even number say 2r) (3) (q + 1)$
 $= 6r (q + 1),$ 1

which is divisible by 6.

Case III. If	a = 3q + 2.	
<i>.</i>	a(a+1)(a+2) = (3q+2)(3q+3)(3q+4)	
	= multiple of 6 for every q	
	= 6r (say),	1

which is divisible by 6.

Hence, the product of three consecutive integers is divisible by 6. ¹/₂

22. Since $3x^2 - 5$ divides f(x) completely

$$\therefore \qquad (3x^2 - 5) \text{ is a factor of } f(x)$$

$$3(x^2 - \frac{5}{3}) \text{ is a factor of } f(x)$$

$$\therefore \qquad \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) \text{ is a factor of } f(x)$$

$$\therefore \qquad \sqrt{\frac{5}{3}} \text{ and } -\sqrt{\frac{5}{3}} \text{ are zeroes of } f(x)$$

$$3x^2 - 5) 3x^4 + 3x^3 - 11x^2 - 5x + 10 (x^2 + x - 2)$$

$$3x^4 \qquad - 5x^2$$

$$- \frac{+}{3x^3 - 6x^2 - 5x}$$

$$3x^3 \qquad - 5x$$

$$- \frac{+}{-6x^2 + 10}$$

$$- \frac{+}{-6x^2 + 10}$$

$$\frac{+ - -}{\frac{\times}{x}}$$

$$(x^2 + x - 2) \text{ is a factor of } p(x)$$

$$(x + 2) (x - 1) \text{ is a factor of } p(x)$$

$$1$$

-2 and 1 are zeroes of p(x)

$$\therefore$$
 all the zeroes of $p(x)$ are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$, -2 and 1.

 $-1 \rightarrow n - n$

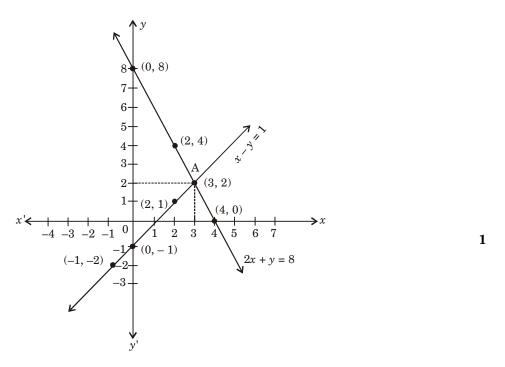
23.

:.

	x - y = 1	$1 \Rightarrow y = x -$	- 1
x	2	3	- 1
у	1	2	-2
	2x + y = 8	$B \Rightarrow y = 8 - 2$	2x
x	2	4	0
у	4	0	8

1

Plotting the above points we get the graphs of the equations x - y = 1 and 2x + y = 8.



Clearly, the two lines intersect at point A (3, 2).

:. Solution of given equations is x = 3, y = 2.

Again,
$$x - y = 1$$
 intersects y-axis at $(0, -1)$ 1

and

and

$$2x + y = 8$$
 intersects y-axis at $(0, 8)$.

24.

$$2x - y = 1 \implies y = 2x - 1$$

$$x \qquad 0 \qquad 1 \qquad 3$$

$$y \qquad -1 \qquad 1 \qquad 5$$

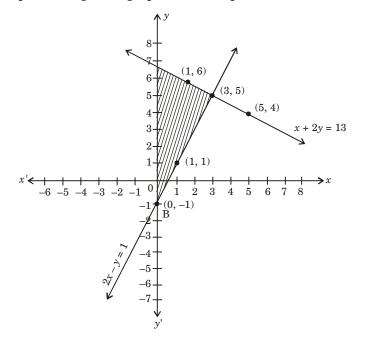
$$x + 2y = 13 \implies y = \frac{13 - x}{2}$$

1

1⁄2

x	1	3	5
У	6	5	4

Plotting the above points we get the graph of above equations.



Clearly, two lines intersect at point A (3, 5).1Hence, x = 3 and y = 5 is the solution of above equations.1ABC is the triangular shaded region formed by the lines and the y-axis.1

25. Given : ABC is a triangle in which DE || BC.

	AD AE		
To prove :	$\overline{\text{BD}} = \overline{\text{CE}}$		
Construction : Draw DN \perp A	E and EM \perp AD. Join B	BE and CD.	1
	1		

Proof : In
$$\triangle ADE$$
, area ($\triangle ADE$) = $\frac{1}{2} \times AE \times DN$...(i)

area (
$$\Delta DCE$$
) = $\frac{1}{2} \times CE \times DN$...(ii)

Divide (i) by (ii)
$$\frac{\operatorname{area}(\Delta ADE)}{\operatorname{area}(\Delta DCE)} = \frac{\frac{1}{2} \times AE \times DN}{\frac{1}{2} \times CE \times DN}$$

$$\Rightarrow \qquad \frac{\operatorname{area}(\Delta ADE)}{\operatorname{area}(\Delta DEC)} = \frac{AE}{CE} \qquad \dots(iii) 1$$

$$\operatorname{area}(\Delta ADE) = \frac{1}{2} \times AD \times EM \qquad \qquad A \qquad \dots(iv)$$

$$\operatorname{area}(\Delta DEB) = \frac{1}{2} \times EM \times BD \qquad \qquad \dots(v)$$
Divide (iv) by (v),
$$\frac{\operatorname{area}(\Delta ADE)}{\operatorname{area}(\Delta DEB)} = \frac{\frac{1}{2} \times AD \times EM}{\frac{1}{2} \times BD \times EM}$$

1

$$\Rightarrow \qquad \qquad \frac{\text{area}\left(\Delta ADE\right)}{\text{area}\left(\Delta DEB\right)} = \frac{AD}{BD} \qquad \qquad \dots (\text{iv}) \mathbf{1}$$

 ΔDEB and ΔDEC lies on the same base DE and between same parallel lines DE and BC. \therefore area (ΔDEB) = area (ΔDEC)

From equation (iii),
$$\frac{\text{area}(\Delta ADE)}{\text{area}(\Delta DEB)} = \frac{AE}{CE}$$
 ...(vii)

From equations (vi) and (vii), we get

$\frac{AE}{CE} = \frac{AD}{BD}$ Proved. 1 P

26. Given : The line segment XY is parallel to side AC of ΔABC. XY divides ΔABC in to two parts equal in area.
 To find : In ΔBAC and ΔBXY

To find : In ΔBAC an	$\Delta B \Delta Y, \qquad \angle B = \angle B$	(Common)
	$\angle BAC = \triangle BXY$	(Corresponding angles)
.:.	$\Delta BAC \sim \Delta BXY$	(By AA similarity) 1
We have,	$\frac{\operatorname{ar}\left(\Delta BAC\right)}{\operatorname{ar}\left(\Delta BXY\right)} = \left(\frac{BA}{BX}\right)^{2}$	

(:: ratio of areas of similar triangles is proportional to the squares on the sides of the triangles)

$$\frac{2 \times \operatorname{ar} (\Delta BXY)}{\operatorname{ar} (\Delta BXY)} = \left(\frac{AB}{BX}\right)^{2}$$

$$\Rightarrow \qquad \qquad \frac{AB}{BX} = \sqrt{2}$$

$$\Rightarrow \qquad \qquad \frac{BX}{AB} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \qquad \qquad 1 - \frac{BX}{AB} = 1 - \frac{1}{\sqrt{2}}$$

$$\Rightarrow \qquad \qquad \frac{AB - BX}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$

$$B \qquad \qquad Y \qquad C$$

$$\frac{AX}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}}$$

27. Given : $\cos \theta + \sin \theta = p$ and $\sec \theta + \csc \theta = q$

LHS =
$$q(p^2 - 1) = (\sec \theta + \csc \theta) [(\cos \theta + \sin \theta)^2 - 1]$$

= $(\sec \theta + \csc \theta) [1 + 2 \sin \theta \cos \theta - 1]$

$$= \left(\frac{1}{\cos\theta} + \frac{1}{\sin\theta}\right) (2\sin\theta\cos\theta]$$
 2

28.

:.

LHS =
$$(\sin A + \sec A)^2 + (\cos A + \csc A)^2$$

$$= \left(\sin A + \frac{1}{\cos A}\right)^2 + \left(\cos A + \frac{1}{\sin A}\right)^2$$
¹/₂

$$= \sin^{2} A + \frac{1}{\cos^{2} A} + 2 \frac{\sin A}{\cos A} + \cos^{2} A + \frac{1}{\sin^{2} A} + 2 \frac{\cos A}{\sin A}$$

$$= \sin^{2} A + \cos^{2} A + \frac{1}{\sin^{2} A} + \frac{1}{\cos^{2} A} + 2 \left(\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} \right)$$

$$= 1 + \frac{\sin^{2} A + \cos^{2} A}{\sin^{2} A \cos^{2} A} + 2 \left(\frac{\sin^{2} A + \cos^{2} A}{\sin A \cos A} \right)$$

$$= 1 + \frac{1}{\sin^{2} A \cos^{2} A} + \frac{2}{\sin A \cos A}$$

$$= \left(1 + \frac{1}{\sin A \cos A} \right)^{2}$$

$$= (1 + \sec A \cdot \csc A)^{2}.$$
Proved.

29. Let $\cot \theta = x$, $\sqrt{3} \cot^2 \theta - 4 \cot \theta + \sqrt{3} = 0$ becomes

$$\sqrt{3} x^2 - 4x + \sqrt{3} = 0$$
 1

or $(x - \sqrt{3}) (\sqrt{3} x - 1) = 0$

:.

$$x = \sqrt{3}$$
 or $\frac{1}{\sqrt{3}}$ 1

$$\Rightarrow \qquad \cot \theta = \sqrt{3} \text{ or } \cot \theta = \frac{1}{\sqrt{3}}$$

$$\therefore \qquad \qquad \theta = 30^{\circ} \text{ or } \theta = 60^{\circ}$$

If
$$\theta = 30^\circ$$
, then $\cot^2 30^\circ + \tan^2 30^\circ = (\sqrt{3})^2 + \left(\frac{1}{\sqrt{3}}\right)^2 = 3 + \frac{1}{3} = \frac{10}{3}$ 1

If
$$\theta = 60^{\circ}$$
, then $\cot^2 60^{\circ} + \tan^2 60^{\circ} = \left(\frac{1}{\sqrt{3}}\right)^2 + (\sqrt{3})^2 = \frac{1}{3} + 3 = \frac{10}{3}$ 1

30. (i) Here class intervals are not in inclusive form. So, we first convert them in inclusive form by subtracting 1/2 from the lower limit and adding 1/2 to the upper limit of each cases. where *h* is the difference between the lower limit of a class and the upper limit of the preceding class. The given frequency distribution in inclusive form is as follows :

Age (in years)	No. of cases	
4.5 -14.5	6	
14.5 - 24.5	11	
24.5 - 34.5	21	
34.5 - 44.5	23	
44.5 - 54.5	14	
54.5 - 64.5	5	

It is clear from the table that the modal class is 34.5 - 44.5.

Here, $l=34{\cdot}5,\,h=10,f_1=23,f_0=21,f_2=14$

Now,

Mode =
$$l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

 \Rightarrow

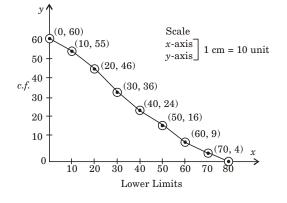
Mode =
$$34 \cdot 5 + \frac{23 - 21}{46 - 21 - 14} \times 10$$

= $34 \cdot 5 + \frac{2}{11} \times 10$
= $34 \cdot 5 + 1 \cdot 81 = 36 \cdot 31$ 1

- (ii) Mode of grouped data.
- (iii) Habits of neatness and cleanliness help us lead a healty life.

31.	Classes	More than or equal to	c.f.
	0 – 10	0	60
	10 - 20	10	55
	20 - 30	20	46
	30 - 40	30	36
	40 - 50	40	24
	50 - 60	50	16
	60 - 70	60	9
	70 - 80	70	4

More than ogive is as under :



2

1

1

1

 $\mathbf{2}$