1. What value of x will make DE II AB in the given figure?

2. In figure, $D E$ is parallel to base $B C$. If $A D=2.5 \mathrm{~cm}, B D=3.0 \mathrm{~cm}$ and $A E=3.75 \mathrm{~cm}$, find the length of $A C$

3. In the figure. $X Y$ II BC. Find the length of $X Y$

4. In figure, considering triangles BEP and CPD, prove that:
$B P \times P D=E P \times P C$

5. If $\triangle A B C \sim \triangle P Q R$. Also ar $(\triangle A B C)=4 \operatorname{ar}(\triangle P Q R)$. If $B C=12 \mathrm{~cm}$, find $Q R$
6. The areas two similar triangles $A B C$ and DEF are $36 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectively. If EF $=6.9 \mathrm{~cm}$, determine BC
7. Two isosceles triangles have equal angles and their areas are in the ratio 81:25. Find the ratio of their Corresponding heights
8. D, E and F are respectively the mid points of the sides $B C, C A$ and $A B$ of $\triangle A B C$. Find the ratio of the areas of $\triangle D E F$ and $\triangle A B C$
9. The perimeters of two similar triangles are 36 cm and 48 cm respectively. If one side of the first triangle is 9 cm , what is the corresponding side of the other triangle
10. In triangle $A B C, A B=\sqrt{3 a}, A C=a$ and $B C=2 a$. Prove that $\angle A=90^{\circ}$
11. In triangle $A B C, \angle B A C=90^{\circ}$ and $A D \perp B C$. If $B D=8 \mathrm{~cm}, D C=18 \mathrm{~cm}$, find $A D$
12. Two poles of height 8 m and 13 m stand on a plane ground. If the distance between their tips is 13 m , find the distance between their feet
13. The perpendicular from A on side $B C$ of a triangle $A B C$ intersects $B C$ at D such that $B D=3 C D$. Prove that $2 A B^{2}-2 A C^{2}=B C^{2}$
14. In an isosceles triangle $A B C$ with $A B=A C, B D$ is a perpendicular from B to the side $A C$. Prove that $B D^{2}-C D^{2}=2 C D . A D$
15. P and Q are points on the sides $C A$ and $C B$ respectively of a $\triangle A B C$ right angled at C. Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$
16. In figure, T trisects the side $Q R$ of right triangle $P Q R$.

Prove that $8 \mathrm{PT}^{2}=3 \mathrm{PR}^{2}+5 \mathrm{PS}^{2}$

17. If $B L$ and $C M$ are medians of a triangle $A B C$ right angled at A, then prove that $4\left(B L^{2}+C M^{2}\right)=5 B C^{2}$

