1. Find a quadratic polynomial, the sum and product of whose zeroes are 0 and $\sqrt{ } 5$ respectively.
2. Find the quadratic polynomial, the sum and product of whose zeroes are 4 and 1, respectively
3. If a and b are the zeros of the quadratic polynomial $f(x)=x^{2}-5 x+4$, find the value of $1 / a+1 / b-$ 2 ab
4. Find the zeroes of the quadratic polynomial $4 \sqrt{ } 3 x^{2}+5 x-2 \sqrt{ } 3$ and verify the relationship between the zeroes and the coefficients.
5. Find the zeroes of the quadratic polynomial $4 u^{2}+8 u$ and verify the relationship between the zeroes and the coefficients
6. Find the quadratic polynomial, the sum and product of whose zeroes are $\sqrt{ } 2$ and 3 respectively.
7. If a and b are the zeros of the given quadratic polynomial $f(x)=5 x^{2}-7 x+1$, find the value $1 / a+$ 1/b
8. Find the zeroes of the polynomial $x^{2}-3$ and verify the relationship between the zeroes and the Coefficients
9. Find the remainder when $p(x)=x^{3}-6 x^{2}+2 x-4$ when divided by $1-2 x$.
10. Find the remainder when $x^{51}+51$ is divided by $(x+1)$.
11. Find all the integral zeros of $x^{3}-3 x^{2}-2 x+6$
12. Obtain all zeros of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeros are $\sqrt{ } 5 / \sqrt{ } 3$ and $-\sqrt{ } 5 / \sqrt{3}$
13. If $(x-2)$ and $[x-1 / 2]$ are the factors of the polynomials $q x^{2}+5 x+r$ prove that $q=r$
14. If the zeroes of the polynomial are $3 x^{2}-5 x+2$ are $a+b$ and $a-b$, find a and b.
15. On dividing $2 x^{2}+3 x+1$ by a polynomial $g(x)$, the quotient and the remainder were $2 x-1$ and 3 respectively. Find $\mathrm{g}(\mathrm{x})$.
