JSIII THORIML ACBSEE Coaching for O(athematics and Science

SUMMATIVE ASSESSMENT - I, 2016-17 गणित / MATHEMATICS
 कक्षा - X / Class - X

89IH6AW

Time Allowed: 3 hours
Maximum Marks: 90

SECTION - A

1. In $A X Y Z, A$ and B are points on the sides $X Y$ and $X Z$ respectively such that $A B$ II $Y Z$. If $A Y=2.2 \mathrm{~cm}, X B$ $=3.3 \mathrm{~cm}$ and $X Z=6.6 \mathrm{~cm}$, then find $A X$.
2. If $A+B=90^{\circ}$, and $\sec A=5 / 3$, then find the value of $\operatorname{cosec} B$.
3. If $\tan \left(3 x-15^{\circ}\right)=1$, then find the value of x.
4. Find the mode of the data, using an empirical formula, when it is given that median $=41.25$ and mean $=33.75$.

SECTION - B

5. Determine the values of p and q so that the prime factorisation 2520 is expressible as $2^{3} \times 3^{p} \times q \times 7$
6. What is the decimal expansion of the rational number $\frac{201}{250}$

7 .Find whether the lines representing the following pair of linear equabJns intersect at a point, are parallel or coincident: $3 x+y=7$ and $6 x+2 y=8$
8 .Two pillars of heights 70 m and 20 m are standing 120 m apart. Find the distance between their tops.
9. Find the value of : $\frac{\tan 30^{\circ}+\tan 45^{\circ}}{1-\tan 30^{\circ} \cdot \tan 45^{\circ}}$

10 .The following table shows the daily consumption of milk in 40 houses of a locality:
Consumption (in litres) 0-0.5 0.5-1 1-1.51.5-2 2-2.5
$\begin{array}{llllll}\text { Number of houses } & 7 & 15 & 10 & 5 & 3\end{array}$
Find the modal class and median class for the data.

SECTION - C

11. Find the HCF of 180,252 and 324 by Euclid's Division algorithm.
12. Divide the polynomial $x^{3}-3 x^{2}+3 x+4$ by the polynomial $x-2$ and verify the division algorithm 13. If the sum and product of the zeroes of the polynomial $a x^{2}-6 x+$ c is equal to 12 each, find the value of " a " and "c" each.

14 .Solve by elimination: $9 x+10 y=29$ and $10 x+9 y=28$
15. In $\triangle A B C$, from any interior point O of the triangle, $O D \perp B C$,
$O E \perp A C$ and $O F \perp A B$ are drawn.
Prove that $O A^{2}+O B^{2}+O C^{2}=O D^{2}+O E^{2}+O F^{2}+A F^{2}+B D^{2}+C E^{2}$
 16. A In a trapezium $A B C D, A B$ II $D C$, If $D C=2 A B$, show that the point of intersection of the two diagonals is a point of trisection. 17 if $\cot B=12 / 5$ then show that $\tan ^{2} B-\sin ^{2} B=\sin ^{2} B . \tan ^{2} B$.
18. Prove that: $\frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{\sin ^{2} \mathrm{~A}}{1-\cos \mathrm{A}}$

JSUIIL THORIML ACBSE Coaching for O(athematics and Science

19. In annual examination, marks (out of 90) obtained by students of Class IX in mathematics are given below :
$\begin{array}{lllllll}\text { Marks } & 0-15 & 15-30 & 30-45 & 45-60 & 60-75 & 75-90\end{array}$
$\begin{array}{lllllll}\text { Number of students } & 2 & 4 & 5 & 20 & 9 & 10\end{array}$
Find the mean marks.

20 .For the following data, find mode:

Class	$10-13$	$13-16$	$16-19$	$19-22$	$22-25$
Frequency	4	8	9	11	7
		SECTION - D			

21. Prove that only one of the numbers $n-1, n+1$ or $n+3$ is divisible by 3 , where n is any positive integer. Explain.
22. Obtain all other zeroes of the polynomial $x^{4}+x^{3}-16 x^{2}-4 x+48$, if two of its zeroes are 2 and -4 .

23 .solve graphically the pair of linear equations: $5 x-y=5$ and $3 x-2 y=-4$
Also write the coordinates of the point of intersection of these lines with y-axis. Hence shade the region enclosed by these lines and y - axis.
24. A man started his job with a certain monthly salary, and earned a fixed increment every year. His salary was 15,000 after 5 years service and 19,000 after 10 years service. What was his starting salary and his annual increment? Which character you can imbibe from his life?
25 . In the right triangle, B is a point on $A C$ such that $A B+A D=B C+C D$, If
 $A B=x, B C=h$ and $C D=d$, then find x (in terms of h and d)
26. In $\triangle A B C$, from A and B altitudes $A D$ and $B E$ are drawn. Prove that $\triangle A D C \sim \triangle B E C$.

Is $\triangle \mathrm{ADB} \sim \triangle \mathrm{AEB}$ and $\triangle \mathrm{ADB} \sim \triangle \mathrm{ADC}$?
27. If $(\cos \theta+\sin \theta)=\sqrt{ } 2 \sin \left(90^{\circ}-\theta\right)$, show that $(\sin \theta-\cos \theta)=\sqrt{ } 2 \cos \theta$

28 If $m=\cos A-\sin A$ and $n=\cos A+\sin A$, show that $\frac{m^{2}+n^{2}}{m^{2}-n^{2}}=-\frac{1}{2} \sec A \cdot \operatorname{cosec} A=-\frac{(\cot A+\tan A)}{2}$
29 . Prove the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ and use it to prove $\sin ^{4} \theta-\cos ^{4} \theta=1-2 \cos ^{2} \theta$
30. Following is the age distribution of cardiac patients admitted during a month in a hospital:

| Age (in years) | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of patients | 2 | 8 | 15 | 12 | 10 | 5 |

Draw a 'less than type' and a 'more than type' ogive and from the curves, find the median.
31. On Sports day of a school, age-wise participation of students is shown in the following

Age (in years)	$5-7$	$7-9$	$9-11$	$11-13$	$13-15$	$15-17$	$17-19$
Number of students	x	15	18	30	50	48	x

Find the mode of the data. Also, find missing frequencies when sum of frequencies is 181.

