JSHINLL THITIIL ACBSE Coaching for O(athematics and Science

SUMMATIVE ASSESSMENT - I, 2016-17 QVHDP01 MATHEMATICS Class - X

Maximum Marks: 90

Time Allowed: 3 hours

1. X and Y are points on the sides AB and $A C$ respectively of a triangle $A B C$ such that $\frac{A X}{A B}=\frac{1}{4}, A Y=2 \mathrm{~cm}$ and $Y C=6$ cm . Find whether XYII BC or not.
2. Evaluate $\frac{\operatorname{cosec} 13^{\circ}}{\operatorname{Sec} 77^{\circ}}=\frac{\cot 20^{\circ}}{\tan 70^{\circ}}$
3. if $x=3 \sin \theta$ and $y=4 \cos \theta$, find the value of $\sqrt{16 x^{2}+9 y^{2}}$
4. If the median of the series exceeds the mean by 3 , find by what number the mode exceeds its mean.

SECTION - B

5. Check whether 4^{n} can end with the digit 0 for any natural number n.
6.Find the prime factorisation of the denominator of the rational number equivalent to 8.39.
6. Given the linear equation $3 x-4 y=9$ write another linear equation in these two variables such that the geometrical representation of the pair so formed is (i) intersecting lines (ii) coincident lines
7. In a rectangle $A 8 C D, E$ is the middle point of $A D$. If $A D=40 \mathrm{~m}$ and $A B-48 \mathrm{~m}$, then find $E B$
8. If $\operatorname{Sin}(A+B)=1$ and $\sin (A-B)=\frac{1}{2}$, then find A and B.
9. The following table shows the daily Consumption of milk in an houses of a locality

Consumption (in litres)	$0-0.5$	$0.5-1$	$1-1.5$	$1.5-2$	$2-2.5$
Number of houses	7	15	10	5	3

Find the modal class and media class for the data.
SECTION - C
11. Find the HCF of 1620, 1723 and 255 by Euclid's Division algorithm.
12. On dividing the polynomial $4 x^{4}-5 x^{3}-39 x^{2}-46 x-2$ by the polynomial $g(x)$.the quotient and remainder were $x^{2}-3 x$ -5 and $-5 x+8$ respectively. Find $g(x)$
13. If α and β are zeroes of a polynomial $x^{2}+6 x+9$, then form a polynomial whose zeroes are $-\alpha$ and $-\beta$
14. Solve the following pair of equations: $49 x+51 y=499$ and $51 x+49 y=501$
15. In the figure, if EFII $D C$ II $A B$, then prove that $A E / E D=B F / F C$
16. In the given figure, $\triangle A B C, P Q$ II $B C$ and $B C=3 P Q$. Find the ratio of the area of $P R Q$ and area CRB where $P C$ and $B Q$ intersect at R.
17. Given a right angled $\triangle A B C$, right angled at B. In which $\tan A=\frac{15}{8}$ and $\tan C=\frac{8}{15}$, then find the value of $\sin A \cdot \cos C+\cos A \cdot \sin C$

JSUIIL THOTMI ACBSE Coaching for O(athematics and Science

18. Prove that: $(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)=\sin \theta \cos \theta=\frac{1}{\tan \theta+\cot \theta} 19$. In a school IQ of students of Class X are given in the following frequency distribution:

IQ	$120-130$	$130-140$	$140-150$	$150-160$	$160-170$
Number of students	10	80	100	50	10

Find the mean IQ of students.
20. An NGO working for welfare of cancer patients, maintained its records as follows: Find mode.

Age of patients (in years)	$0-20$	$20-40$	$40-60$	$60-80$
Number of patients	35	315	120	50

SECTION-D

21. Prove that only one of the number $n-1, n+1$ or $n+3$ is divisible by 3 where n is any positive integer. Explain,
22. Obtain all other zeroes of the polynomial $x^{4}+x^{3}-16 x^{2}-4 x+48$. If two of its zeroes are 2 and -4
23. Solve the following pair of linear equations graphically $6 x-y+4=0$ and $2 x-5 y=8$. Shade the region bounded by the lines and y - axis.
24. Raghav scored 70 marks in a test, getting 4 marks for each right answer and losing I mark for each wrong answer. Had 5 marks been awarded for each correct answer and 2 marks been deducted for each wrong answer, then Raghav would have scored 80 marks. How many questions he attempted.

Which value would Raghav violate if he resorts to unfair means?
25. On three line segments $O A, O B$ and $O C$ there are points L, M and N respectively such that $L M$ II $A B$ and $M N$ II $B C$. If L, M, N and A, B, C are non-collinear points, then prove that $L N$ II $A C$.
26. Two poles of height ' p ' and ' q ' metres are standing vertically on a level ground, ' a ' metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{p q}{p+q}$
27.if $\theta=45^{\circ}$ then verify the following (i) $\sin 2 \theta=.2 \sin \theta \cos \theta$) (ii) $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.
28. If $\tan A+\sin A=m$ and $\tan A-\sin A=n$, then prove that $\left(n^{2}-n^{2}\right)^{2}=16 m n$.
29. If $\sec \theta-\tan \theta=x$, show that: $\sec \theta=\frac{1}{2}\left(x+\frac{1}{x}\right)$ and $\tan \theta==\frac{1}{2}\left(x-\frac{1}{x}\right)$
30. Production yield per hectare of wheat of some farms of a village are given in the following table

Production (kg/ha)	$40-45$	$45-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$	$80-85$
Number of farms	19	15	18	40	26	16	14	10

Draw a 'less than type' ogive and amore than type' ogive for this data
31. Find the missing frequencies and the median for the following distribution if the mean is 1.46

No. of accidents	0	1	2	3	4	5	Total
No. of days	46	x	y	25	10	5	200

