$\triangle C B S E$ Coaching for Ofathematies and Science

Class X

Mathematics (Standard)
SQP Marking Scheme (2019-20)

Section-A		
1	(c) 3 decimal places	1
2	(a) 165	1
3	(c) 20	1
4	(a) all real values except 10	1
5	(d) not defined	1
6	(a) $\sqrt{2}-1$	1
7	(d) 30°	1
8	(d) IV quadrant	1
9	(c) 4	1
10	(a) -12	1
11	$\pi r l+2 \pi r h+\pi r^{2}$	1
12	4	1
	5	1
13	$49: 81$	$\frac{1}{2}+\frac{1}{2}$
14	14,38	1
15	$\frac{3}{11}$	$\frac{1}{2}$
16	Rational number= 0.30	$\frac{1}{2}$
	Irrational number $=0.3010203040 \ldots$	
	Or any other correct rational and irrational number	$\frac{1}{2}$

ACBSE Coaching for OKathematics and Science

	$\Rightarrow \frac{A C}{A D}=\frac{A B}{A C}$	$\frac{1}{2}$
	$\therefore \mathrm{AB}=12 \mathrm{~cm}$	
18	$\begin{aligned} & \text { In } \triangle O B P, \frac{O B}{O P}=\sin 30^{\circ} \\ & \therefore O P=2 r \end{aligned}$ OR Length of Tangent $=2 \times \sqrt{5^{2}-4^{2}}=2 \times 3 \mathrm{~cm}=6 \mathrm{~cm}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{1}{2}+\frac{1}{2} \end{aligned}$
19	$\begin{aligned} & b, c \text { and } 2 b \text { are in A.P } \Rightarrow c=\frac{3 b}{2} \\ & \quad \therefore b: c=2: 3 \end{aligned}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$
20	$D=(2 \sqrt{2} k)^{2}-4(1)(18)=0 \Rightarrow \mathrm{k}= \pm 3$	$\frac{1}{2}+\frac{1}{2}$
	Section-B	
21	$\begin{aligned} & 110,120,130, \ldots, 990 \\ & \therefore n=89 \end{aligned} \quad a_{n}=990 \Rightarrow 110+(\mathrm{n}-1) \times 10=990$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
22	$\begin{aligned} & A P=A S, B P=B Q, C R=C Q \text { and } D R=D S \\ & \Rightarrow A P+B P+C R+D R=A S+B Q+C Q+D S \\ & Q \quad A B+C D=A D+C B \\ & B u t A B=C D \text { and } A D=C B \\ & \therefore A B=A D \end{aligned}$ Hence, $A B C D$ is a square.	1 1
23	$\begin{aligned} & \triangle A D E \sim \triangle G B D \text { and } \triangle A D E \sim \triangle F E C \\ & \quad \Rightarrow \Delta G B D \sim \triangle F E C \quad(\mathrm{AA} \text { Criterion) } \\ & \quad \Rightarrow \frac{G D}{F C}=\frac{G B}{F E} \Rightarrow \mathrm{GD} \times \mathrm{FE}=\mathrm{GB} \times \mathrm{FC} \text { or } F G^{2}=B G \times F C \end{aligned}$ OR	1 1

ACBSE Coaching for Q(athematics and Science		
	$\begin{aligned} & A D \perp B C \therefore \ln \triangle A B D, A B^{2}=A D^{2}+B D^{2} \\ & \Rightarrow A B^{2}=A D^{2}+\frac{B C^{2}}{4} \text { or } 4 A B^{2}=4 A D^{2}+B C^{2} \\ & \Rightarrow 3 A B^{2}=4 A D^{2} \end{aligned}$	$\frac{1}{2}$ 1 1 $\frac{1}{2}$
24	(i) $\cos \left(90^{\circ}-\theta\right)=\cos \left(3 \theta-30^{\circ}\right)$ $\Rightarrow 90^{\circ}-\theta=3 \theta-30^{\circ} \Rightarrow \theta=30^{\circ}$ (ii) $\frac{A B}{A C}=\sin 30^{\circ}$ \therefore Length of rope $=A C=400 \mathrm{~m}$	1 1
25	For J ayanti, Favourable outcome is $(6,6)$ i.e, 1 Probability (getting the number 36) $=\frac{1}{36}$ For Pihu, Favourable outcome is 6 i.e, 1 Probability(getting the number 36) $=\frac{1}{6}$ \therefore Pihu has the better chance. OR Total number of integers $=29$ (i) Prob.(prime number) $=\frac{6}{29}$ (ii) Prob.(number divisible by 7) $=\frac{4}{29}$	1 1 1 1

	ACBSE Coaching for OKathematics and Scien	
26	$\begin{aligned} \text { Capacity of first glass }= & \pi r^{2} H-\frac{2}{3} \pi r^{3} \\ & =\pi \times 9(10-2)=72 \pi c m^{3} \end{aligned}$ $\begin{aligned} \text { Capacity of second glass } & =\pi r^{2} H-\frac{1}{3} \pi r^{2} h \\ = & \pi \times 3 \times 3(10-0.5)=85.5 \pi \mathrm{~cm}^{3} \end{aligned}$ \therefore Sureshgot more quantity of juice.	1 1
Section - C		
27	Let us assume, to the contrary, that $2 \sqrt{5}-3$ is a rational number $\therefore 2 \sqrt{5}-3=\frac{p}{q}$, where p and q are integers and $q \neq 0$ $\begin{equation*} \Rightarrow \sqrt{5}=\frac{p+3 q}{2 q} \ldots \tag{1} \end{equation*}$ Since p and q are integers $\therefore \frac{p+3 q}{2 q}$ is a rational number $\therefore \sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number Hence our assumption is wrong and hence $2 \sqrt{5}-3$ is an irrational number. OR $\begin{aligned} & 180=144 \times 1+36 \\ & 144=36 \times 4+0 \\ & \therefore \operatorname{HCF}(180,144)=36 \end{aligned}$ $36=13 m-16$ Solving, we get $m=4$	1 1 1 1 2 1
28	$\begin{aligned} S_{m} & =S_{n} \Rightarrow \frac{m}{2}[2 a+(m-1) d]=\frac{n}{2}[2 a+(n-1) d] \\ & \Rightarrow 2 a(m-n)+d\left(m^{2}-m-n^{2}+n\right)=0 \\ & \Rightarrow(\mathrm{~m}-\mathrm{n})[2 a+(m+n-1) d]=0 \text { or } S_{m+n}=0 \end{aligned}$	1 1 1
29	$x+y=7$ and $2(x-y)+x+y+5+5=27$ $\therefore x+y=7$ and $3 x-y=17$ Solving, we get, $x=6$ and $y=1$	$\begin{gathered} \frac{1}{2}+1 \\ \frac{1}{2} \\ 1 \end{gathered}$

	OR Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$ $\Rightarrow 21 \mathrm{a}+47 \mathrm{~b}=110$ and $47 a+21 b=162$ Adding and subtracting the two equations, we get $a+b=4$ and $a-b=2$ Solving the above two equations, we get $a=3$ and $b=1$ $\therefore \mathrm{x}=\frac{1}{3} \text { and } y=1$	1 1 1
30	$p(x)=x^{4}+4 x^{3}-2 x^{2}-20 x-15$ $x^{2}-5$ is factor of $p(x)$ $\therefore p(x)=\left(x^{2}-5\right)\left(x^{2}+4 x+3\right)$ Or $p(x)=\left(x^{2}-5\right)(x+3)(x+1)$ So, all the zeroes of $p(x)$ are $\sqrt{5},-\sqrt{5},-3$ and -1	2 1
31	(i) $\mathrm{A}(1,7), \mathrm{B}(4,2) \mathrm{C}(-4,4)$ Distance travelled by Seema $=\sqrt{34}$ units Distance travelled by Aditya $=\sqrt{68}$ units \therefore Aditya travels more distance (ii) Coordinates of D are $\left(\frac{1+4}{2}, \frac{7+2}{2}\right)=\left(\frac{5}{2}, \frac{9}{2}\right)$ (iii) $\quad \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2}[1(2-4)+4(4-7)-4(7-2)]$ $=17$ sq. units	1 1 1
32	$\begin{aligned} & \sin \theta+\cos \theta=\sqrt{3} \Rightarrow(\sin \theta+\cos \theta)^{2}=3 \\ & \Rightarrow 1+2 \sin \theta \cos \theta=3 \Rightarrow \sin \theta \cos \theta=1 \\ & \therefore \tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=1 \end{aligned}$	1 1 1

	OR $\begin{aligned} & \frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\cos ^{2}\left(45^{\circ}-\theta\right)}{\tan \left(60^{\circ}+\theta\right) \times \tan \left(30^{\circ}-\theta\right)}+\left(\cot 30^{\circ}+\sin 90^{\circ}\right) \times\left(\tan 60^{\circ}-\sec 0^{\circ}\right) \\ & \quad=\frac{\cos ^{2}\left(45^{\circ}+\theta\right)+\sin ^{2}\left(45^{\circ}+\theta\right)}{\tan \left(60^{\circ}+\theta\right) \times \cot \left(60^{\circ}+\theta\right)}+(\sqrt{3}+1) \times(\sqrt{3}-1) \\ & =1+2=3 \end{aligned}$	2 1
33	$\begin{aligned} & \text { Required Area }=\text { Area of triangle - Area of } 3 \text { sectors } \\ & \text { Area of Triangle }=\frac{1}{2} \times 24 \times 7=84 \mathrm{~m}^{2} \\ & \text { Area of three sectors }=\frac{\pi r^{2}}{360^{\circ}} \times(\text { sum of three angles of triangle }) \\ & \qquad=\frac{22 \times 7 \times 7 \times 180^{\circ}}{7 \times 2 \times 2 \times 360^{\circ}}=\frac{77}{4} \text { or } 19.25 \mathrm{~m}^{2} \\ & \therefore \text { Required Area }=\frac{259}{4} \text { or } 64.75 \mathrm{~m}^{2} \end{aligned}$	1 1 1
34	(i) Curve 1 - Less than ogive, Curve2 - More than ogive (ii) Median Rainfall $=21 \mathrm{~cm}$ (iii) 3 Median = Mode +2 mean $\therefore \text { Mode }=16.2 \mathrm{~cm}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Section-D		
35	Correct construction of given triangle Correct construction of similar Δ with scale factor $\frac{3}{4}$ OR Correct construction of given circle Correct construction of two tangents	1 3 1 3
36	For correct given, to prove, const. and figure For correct proof	$\begin{aligned} & \left(4 \times \frac{1}{2}\right. \\ & =2) \end{aligned}$
37	Let the original speed of the train be $x \mathrm{~km} / \mathrm{h}$ $\begin{aligned} & \therefore \frac{360}{x}-\frac{360}{x+5}=\frac{48}{60} \\ & \Rightarrow x^{2}+5 x-2250=0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$

	$\Rightarrow(\mathrm{x}+50)(x-45)=0 \quad \therefore x=45$ Hence original speed of the train $=45 \mathrm{~km} / \mathrm{h}$ OR $\begin{gathered} \frac{1}{x}-\frac{1}{x-2}=3 \\ \frac{x-2-x}{x(x-2)}=\frac{3}{1} \\ 3 x^{2}-6 x=-2 \\ 3 x^{2}-6 x+2=0 \\ x=\frac{6 \pm \sqrt{12}}{6} \\ =\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3} \end{gathered}$	1
38	$\begin{aligned} \text { Capacity of tank }=\frac{1}{3} & \pi \times 20 \times\left(10^{2}+25^{2}+10 \times 25\right) m^{3} \\ & =\pi \times 20 \times 325 \mathrm{~m}^{3}=\pi \times 20 \times 325 l \end{aligned}$ Cost of petrol $=\pi \times 20 \times 325 \times 70=$ ₹ 1430000 $\text { Slant height }=\sqrt{20^{2}+(25-10)^{2}}=25 \mathrm{~m}$ Surface area of tank $=\pi \times 25(10+25) m^{2}=2750 m^{2}$ OR Quantity of water flowing through pipe in 1 hour $=\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000 \mathrm{~m}^{3}$ Required time $=\left(50 \times 44 \times \frac{21}{100}\right) \div\left(\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000\right)$ $=2$ hours	$1 \frac{1}{2}$ $\frac{1}{2}$ 1 1 1 2

ACBSE Coaching for Q(athematics and Science						
39	Correct figure In $\triangle A B E, \frac{B E}{A B}=$ $\Rightarrow \mathrm{AB}=30$ In $\triangle D A C$, $\Rightarrow \mathrm{AC}=90$ $B C=A C-A B=$ \therefore Speed of aero		D			1 1 1 1 $\frac{1}{2}$ $\frac{1}{2}$
40	Daily Wages(in Rs.) $100-120$ $120-140$ $140-160$ $160-180$ $180-200$ $200-220$ $220-240$ Total Mean daily Mode $=160$	Number of Workers $\left(f_{i}\right)$ $\begin{aligned} & =170+\frac{1}{11} \\ & \frac{22-20}{4-20-18} \times 20 \end{aligned}$	x_{i} 110 130 150 170 190 210 230	 -3 -2 -1 0 1 2 3	$f_{i} u_{i}$ -30 -30 -20 0 18 24 39 1	2 1

