Class - X

Mathematics-Basic (241)
Marking Scheme-SQP 2019-20

Max. Marks: $\mathbf{8 0}$
Duration: 3 hrs.

1.	(b) 42	(1)
2.	(a)2 Mean $=3$ Median - Mode	(1)
3.	(d) 70°	(1)
4.	(b) $5^{2} \times 13$	(1)
5.	(a) $\frac{1}{26}$	(1)
6.	(d) 4	(1)
7.	(c) 5.010010001..	(1)
8.	(c) 3	(1)
9.	(b) 5 units	(1)
10.	(b) $(-3,5)$	(1)
11.	$(2,3)$	(1)
12.	2 OR 1	(1)
13.	1	(1)
14.	0	(1)
15.	4:9	(1)
16.	Sin $\mathrm{P}=1 / \sqrt{2}$	(1)

	OR $\operatorname{cosec} A=17 / 15$	
17.	$\begin{aligned} & \text { Area of quadrant }=\frac{1}{4} \times \frac{22}{7} \times r^{2}=38.5 \text { (use } \pi=\frac{22}{7} \text {) } \\ & \Rightarrow r=7 \mathrm{~cm} \\ & \therefore \text { diameter }=14 \mathrm{~cm} \end{aligned}$	$\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$
18.	$\frac{1}{2}$	1
19.	$\begin{aligned} & \frac{A D}{B D}=\frac{A E}{E C} \quad \text { (By B.P.T.) } \\ & \frac{1.5}{3}=\frac{1}{E C} \\ & \therefore E C=2 \mathrm{~cm} \end{aligned}$	$\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$
20.	$\begin{aligned} & A_{5}=a_{1}+4 d=0 \\ & 1^{2}+4 d=0 \\ & d=-3 \end{aligned}$	$\begin{aligned} & \left(\frac{1}{2}\right) \\ & \left(\frac{1}{2}\right) \end{aligned}$
SECTION - B		
21.	$P(\text { Two Head })=\frac{1}{4}$	(1) (1)
22.	$\begin{aligned} & \text { Good bulbs }=25-5=20 \\ & P(\text { good bulb })=\frac{20}{25}=\frac{4}{5} \end{aligned}$ OR Of all those outcomes, the ones for which $a+b=8$ are $2+6,3+5,4+4,5+3,6+2$ or 5 outcomes. $P=5 / 36$	(1) (1) (1) (1)

23.	$\begin{gathered} \angle O L A=90^{\circ} \\ \angle O M D=90^{\circ} \\ \angle O L A=\angle O M D \end{gathered}$ Which are alternate angles, hence $A B \\| C D$	(1) (1)
24.	$\begin{aligned} & \text { LHS }=\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} \\ & =\operatorname{Cot}\left(90^{\circ}-48^{\circ}\right) \cot \left(90^{\circ}-23^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ} \\ & =\operatorname{Cot} 42^{\circ} \cot 67^{\circ} \tan 42^{\circ} \tan 67^{\circ} \\ & =1 \end{aligned}$	(1) (1) (1) (1)
25.	$r=\frac{7}{2}$ Area of Circle $=\frac{\pi r^{2}}{4}=\frac{77}{2} \mathrm{~cm}^{2}$	(1) (1)
26.	(i) 3 Students (ii) $\frac{x^{2}+2 x+1}{x+1}$ $=\frac{(x+1)^{2}}{x+1}=x+1$	(1) (1)
SECTION - C		

ACBSE Coaching for OGathematics and Science

\begin{tabular}{|c|c|c|}
\hline 27. \& \begin{tabular}{l}
\[
\begin{aligned}
\& x^{2}-3 x-10=0 \\
\& x^{2}-5 x+2 x-10=0 \\
\& x(x-5)+2(x-5)=0 \\
\& (x-5) \quad(x+2)=0 \\
\& x=5,-2
\end{aligned}
\] \\
Sum of the roots \(=\frac{-b}{a}=\frac{3}{1}\) which is same as \(5-2=3\) product of the roots \(=\frac{c}{a}=-10\) which is same as \(5 \times(-2)=-10\) Hence verified
\end{tabular} \& (3) \\
\hline 28. \& \begin{tabular}{l}
Correct construction of given circle \\
Correct construction of two tangents \\
OR \\
Line of given length \\
Correct position of point which divides the line segment in the given ratio
\end{tabular} \& \begin{tabular}{l}
(1) \\
(2) \\
(1) \\
(2)
\end{tabular} \\
\hline 29. \& \begin{tabular}{l}
\[
\begin{aligned}
\text { Area of track }=120 \times 70 \& +\square(35)^{2}-\left[120 \times 56+\square(28)^{2}\right] \\
\& =120 \times 14+\frac{22}{7}\left[(35)^{2}-(28)^{2}\right] \\
\& =1680+\frac{22}{7} \times 7 \times 63 \\
= \& 1680+1386 \\
= \& 3066 \mathrm{~m}^{2}
\end{aligned}
\] \\
Yes, Meena is wrong.
\end{tabular} \& \[
\begin{aligned}
\& \hline(1) \\
\& \left(1 \frac{1}{2}\right) \\
\& \left(\frac{1}{2}\right)
\end{aligned}
\] \\
\hline 30. \& \[
\begin{aligned}
\& \text { L.H.S. }=\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\frac{\cos A}{\sin A}-\cos A}{\frac{\cos A}{\sin A}+\cos A} \\
\& \\
\& =\frac{\cos A\left(\frac{1}{\sin A}-1\right)}{\cos A\left(\frac{1}{\sin A}+1\right)}=\frac{\left(\frac{1}{\sin A}-1\right)}{\left.\frac{1}{\sin A}+1\right)} \\
\& \\
\& =\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}=\text { R.H.S }
\end{aligned}
\] \& (1)

(1) \\
\hline
\end{tabular}

	OR $\text { L.H.S. }=\frac{\tan A+\sin A}{\tan A-\sin A}$ $\begin{gathered} =\frac{\frac{\operatorname{Sin} A}{\operatorname{Cos} A}+\operatorname{Sin} A}{\frac{\operatorname{Sin} A}{\operatorname{Cos} A}-\cos A}=\frac{\operatorname{Sin} A}{\operatorname{Sin} A} \frac{[\operatorname{Sec} A+1]}{[\operatorname{Sec} A-1]} \\ =\text { R.H.S } \end{gathered}$	(1) $\left(\frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ (1) (1)
31.	Let us assume that $5-\sqrt{3}$ is a rational We can find co prime $\mathrm{a} \& \mathrm{~b}(\mathrm{~b} \neq 0)$ such that $5-\sqrt{3}=\frac{a}{b}$ Therefore 5- $\frac{a}{b}=\sqrt{3}$ So we get $\frac{5 b-a}{b}=\sqrt{3}$ Since $a \& b$ are integers, we get $\frac{5 b-a}{b}$ is rational, and so $\sqrt{3}$ is rational. But $\sqrt{3}$ is an irrational number Which contradicts our statement $\therefore 5-\sqrt{3}$ is irrational OR $\begin{aligned} & 616=32 \times 19+8 \\ & \Rightarrow r=8 \neq 0 \\ & 32=8 \times 4+0 \\ & \Rightarrow r=0 \end{aligned}$ The HCF of 32 and 616 is 8 .	$\left(\frac{1}{2}\right)$ (1) $\left(\frac{1}{2}\right)$ (1) (2) (1)
32.		(1)

	In $\triangle O P A$ and $\triangle O P B$ ```\anglePAO= \anglePBO (each 90') OP=OP(common) O A = O B (r a d i i ~ o f ~ s a m e ~ c i r c l e ~) \triangleOPA\cong\triangleOPB (by RHS congruency axiom Hence PA = PB (CPCT)```	(1) (1)
33.	(i) $(6,4)$ (ii) $\sqrt{(6-3)^{2}+(1-4)^{2}}=3 \sqrt{2}$ units (iii) Sita and Rita	(1) (1) (1)
34.	$\begin{align*} & 2 x+3 y=11 \tag{1}\\ & x-2 y=-12 \tag{2}\\ & (2) \Rightarrow x=2 y-12 \tag{3} \end{align*}$ Substitute value of x from (3) in (1), we get $\begin{aligned} & 2(2 y-12)+3 y=11 \\ & \Rightarrow 4 y-24+3 y=11 \\ & \Rightarrow 7 y=35 \\ & \Rightarrow y=5 \end{aligned}$ Substituting value of $\mathrm{y}=5$ in equation (3), we get $x=2(5)-12=10-12=-2$ Hence $x=-2, y=5$ is the required solution $\begin{aligned} & \text { Now } 5=-2 m+3 \\ & \Rightarrow 2 m=3-5 \\ & \Rightarrow 2 m=-2 \\ & m=-1 \end{aligned}$	(1) (1) (1)
SECTION - D		
35.	Let two consecutive positive integers be x and $x+1$	$\left(\frac{1}{2}\right)$

$A \subset B S E$ Coaching for Ofathematics and Science

	$\therefore x^{2}+(x+1)^{2}=365$ $\Rightarrow x^{2}+x-182=0$ $\begin{gathered} (x+14)(x-13)=0 \\ \therefore x=13 \end{gathered}$ Hence two consecutive positive integers are 13 and 14	$\left(1 \frac{1}{2}\right)$ (1) (1)
36.	Let common difference be d $\begin{gathered} \Rightarrow \frac{14}{2}[2(10)+(n-1) d]=1050 \\ \Rightarrow d=10 \\ a_{20}=a+19 d \\ =10+19(10)=200 \end{gathered}$ OR $\begin{aligned} a & =5 \\ \mathbf{a}_{\mathbf{n}} & =\mathbf{4 5} \\ S_{n} & =400 \end{aligned}$ $\begin{aligned} & \Rightarrow \frac{n}{2}(5+45)=400 \\ & 50 n=800 \\ & n=16 \end{aligned}$ also $a_{n}=45$ $5+15 d=45$ $15 \mathrm{~d}=40$ $d=8 / 3$	(2)

37.	For correct fig $\begin{aligned} & \operatorname{In} \triangle A D C, \tan 45^{\circ}=\frac{75}{C D} \\ & 1=\frac{75}{C D} \Rightarrow C D=75 \end{aligned}$ In $\triangle A D B, \tan 30^{\circ}=\frac{75}{B D}$ $\frac{1}{\sqrt{3}}=\frac{75}{B D}$ $\Rightarrow B D=75 \sqrt{3}$ \Rightarrow Distance between two ships $=B C=75(\sqrt{3}-1) \mathrm{m}$ $=54.9 \mathrm{~m}$	(1) (1) (1) (1)
38.	For correct, Given, To prove, construction and Figure For correct proof OR For correct statement, Given, To prove, Construction and Figure	$\begin{aligned} & \left(4 \times \frac{1}{2}\right. \\ & =2) \end{aligned}$ (2) $\begin{aligned} & \left(5 \times \frac{1}{2}\right. \\ & \left.=2 \frac{1}{2}\right) \end{aligned}$

	For correct proof		$\left(1 \frac{1}{2}\right)$
39.	A.T. Q. $\begin{aligned} & \pi r^{2} \times 1800=\pi \times \frac{1}{2} \times \frac{1}{2} \times 8 \\ \Rightarrow & r^{2}=\frac{1}{900} \\ \Rightarrow & r=\frac{1}{30} \end{aligned}$ \therefore Thickness of wire $=\frac{1}{15} \mathrm{~cm}$ OR $\begin{gathered} \frac{4}{3} \pi r^{3}=\pi R^{2} h \\ \frac{4}{3}(4.2)^{3}=(6)^{2} h \\ \Rightarrow h=\frac{2744}{100} \\ \therefore h=2 \cdot 744 \mathrm{~cm} \end{gathered}$		(2) $\left(1 \frac{1}{2}\right)$ $\left(\frac{1}{2}\right)$ (2) ($1 \frac{1}{2}$) ($\frac{1}{2}$)
40.	Daily Income Number of workers $400-420$ 12 $420-440$ 14 $440-460$ 8	Cumulative Frequency 12 26 34	

