still Tumainl ACBSE Coaching for Ofathematies and Science

SECOND TERM (SATI)
 MATHEMATICS
 (With Solutions)
 CLASS X

Tine Slowed W Hours]

Moximuar May ES 80

General Instructions :

(i) All questions are compulsory:

(ii) The question paper consists of 34 questions divided into four sections $A, B, C \operatorname{and} D$. Section A comprises of 10 questions of 1 mark each. Section B comprises of 8 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
(iii) Question numbers 1010 in Section A are multiple chalice questions there yon are to select one correct option out of the given four.
(iv) There is no overall choice. However internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of foumumers each. You have to attempt only ane of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Question numbers 1 to 10 are of one mark each/

1. The roots of the equation $x^{2}-3 x-m(m+3)=0$. where m is a constant, are
(a) $m \cdot m+3$
(c) $m-(m+3)$

Solution. Choice (b) is correct.
$x^{2}-3 x-m(m+3)=0$
$\Rightarrow x^{2}-[(m+3)-m] x-m(m+3)=0$
$\Rightarrow x^{2}-(m+3) x+m x-m(m+3)=0$
$\Rightarrow x[x-(m+3)]+m[x-(/ 2+3)] 40$
$\Rightarrow \quad[x-(m+3)] x+m]+0$
$\Rightarrow \quad$ Either $x=m a$ or $x=-m$
Hence, $(m+3)$ and - m retie roots of the given equation.
2. If the common difference of an A.P. is 3 , then $a_{20}-a_{15}$ is
(a) 5
(c) 15
(b) 3

Solution. Choice (c) is correct.
Here, $d=3$

$$
\begin{aligned}
a_{20}(a 15 & =(4)+(20-1) d]-[a+(15-1) d] \\
& =(a+19 d)-(a+14 d) \\
& =5 d \\
(& =5 \times 3
\end{aligned}
$$

3. In figure, O is the centre of a circle, $P Q$ is a chord and $P T$ is the tangent at P. If $\angle P O Q=$ 70°, then $\angle T P Q$ is equal to

(a) 55°
(b) 70°
(c) 45°
(d) 35°

Solution. Choice (d) is correct.
In $\triangle P O Q$, we have
[Sum of the ce \angle of $\Delta=180^{\circ}$]
$\angle P O Q+\angle O P Q+\angle O Q P=180^{\circ}$
$[\because O P=O Q$ (each a radius) $\Rightarrow \angle O Q P=\angle O P Q]$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad 70^{\circ}+2 \angle O P Q=180^{\circ} \\
& \Rightarrow \quad 2 \angle O P Q=180^{\circ}-70^{\circ} \\
& \Rightarrow \quad 2 \angle O P Q=110^{\circ} \\
& \Rightarrow \quad \angle O P Q=55^{\circ}
\end{aligned}
$$

Since $O P$ is the radius of a circle and $T P$ is a tangent at P.

$$
\begin{aligned}
& \therefore O P \perp T P \\
& \Rightarrow \quad \angle O P T=90^{\circ} \\
& \Rightarrow \quad \angle O P Q+\angle T P Q=90^{\circ} \\
& \Rightarrow \quad 55^{\circ}+\angle T P Q=90^{\circ} \\
& \Rightarrow \quad \angle T P Q=90^{\circ}-55^{\circ} \\
& \Rightarrow \quad \angle T P Q=35^{\circ}
\end{aligned}
$$

4. In figure, $A B$ and $A C$ are tangents to the circle with centre O such that $\angle B A C=40^{\circ}$. Then $\angle B O C$ is equal to
(a) 40°
(c) 140°

Solution. Choice (α) is corned
Since the angle between two tangents drawn from an external point to a circle is supplementary to the angle subtended the line segments joining the points of contact at the centre. ie.

5. The perimeter (in cm) of a square circumscribing a circle of radius $a \mathrm{~cm}$, is
(a) $8 a$
(b) $4 a$
(c) $2 a$
(d) $16 a$

Solution. Choice (a) is correct.

Since the square circumscribing a circle of radius $a \mathrm{~cm}$, therefore the diameter of a circle is equal to the side of a square.

But the diameter of a circle $=2 \times$ Radius of a circle

$$
\begin{aligned}
& =(2 \times a) \mathrm{cm} \\
& =2 a \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad$ Side of a square $=2 a \mathrm{~cm}$
Perimeter of a square $=4 \times$ side of a square

$$
=4 \times 2 a \mathrm{~cm}
$$

$$
=8 a \mathrm{~cm}
$$

6. The radius (in cm) of the largest right circular cone that can he cut out from a cube of edge 4.2 cm is
(a) 4.2
(b) 2.1
(c) 8.4
(d) 1.05

Solution. Choice (b) is correct.
The base of the largest right circular cone will be inscribed in a face of the cube and height will be equal to the edge of the cube.

Radius of the base of the cone $(r)=\frac{42}{2}=2.1 \mathrm{cun}$.
7. A tower stands vertically on the ground. From a point on the ground which is 25 nm away from the foot of the tower, the angle of elevation of the top or the tower is found to be 45°. Then the height (in meters) of the tower is
(a) $25 \sqrt{2}$

$$
\text { (b) } 25 \sqrt{3}
$$

$$
\text { (d) } 13.5
$$

(c) 25

Solution. Choice (c) is correct. In right $\triangle A B C$, we have

$$
\begin{aligned}
\therefore \quad \tan 45^{\circ} & =\frac{A B}{B C} \\
\Rightarrow \quad & 1=\frac{A B}{25 \mathrm{~m}} \\
\Rightarrow \quad & A B=\mathbf{2 5}
\end{aligned}
$$

8. If $P\left(\frac{a}{2}, 4\right)$ is the midpoint of the line-segment joining the points $A(-6,5)$ and $B(-2,3)$, then the value of a is
(a) -8
(c) -4
(b) 3

Solution. Chose (a) incorrect.

If $P\left(\frac{a}{4}+\infty\right)$ is the mid-point of the linc-segment joining the points $A(-6,5)$ and $B(-2,3)$, then
A $\frac{(-6)+(-2)}{2}=\frac{a}{2} \because$ and $\frac{5+3}{2}=4$

$$
\begin{array}{lc}
\Rightarrow & -\frac{8}{2}=\frac{a}{2} \\
\Rightarrow & a=-8
\end{array}
$$

9. If A and B are the points $(-6,7)$ and $(-1,-5)$ respectively, then the distance $2 A B$ is equal to
(a) 13
(b) 26
(c) 169
(d) 238

Solution. Choice (b) is corect.
Distance between the points $A(-6,7)$ and $B(-1,-5)$ is $A B$, i.e.,

$$
\begin{aligned}
& A B=\sqrt{(-1+6)^{2}+(-5-7)^{2}} \\
& \Rightarrow \quad \because B=\sqrt{25+144} \\
& \Rightarrow \therefore A B=\sqrt{169} \\
& \Rightarrow
\end{aligned}
$$

\therefore Distance $2 A B=2 \times 13=26$ units.
10. A card is drawn from a well-shuffled deck of 52 play cards. The probahility that the card will not he an ace is
(a) $\frac{1}{13}$
(b)
(c) $\frac{12}{13}$

Solution. Choice (c) is correct.
There are 52 cards in a well-shuffled deck of cards.
Also there are 4 aces, i.e., two red and twoblack aces.
Therefore, the card will not be an ace efird

$$
\begin{aligned}
& =\text { Total number of cards }- \text { The ace will be red or black } \\
& =52-4 \\
& =48 \text { cards }
\end{aligned}
$$

Let A denote the event, that the card will not be an ace.
So, the number of outcomes favourable to event A are 48 .

$$
\therefore \quad P(A)=\frac{48}{52}=\frac{12}{13}
$$

Section 'B'

Question manbers 10 to 18 carry 2 marks each.
11. Find the value of m so that the quadratic equation $m x(x-7)+49=0$ has two equal roots.

Solution, The given quadratic equation is:

$$
\Rightarrow \begin{aligned}
m(x)-7)+49 & =0 \\
\Rightarrow \therefore t^{2}-7 m x+49 & =0
\end{aligned}
$$

Hele $a=m, b=-7 m$ and $c=49$
For equal roots.

$$
\begin{aligned}
D=b^{2}-4 a c & =0 \\
(-7 m)^{2}-4(m)(49) & =0
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & 49 m^{2}-196 m & =0 \\
\Rightarrow & & 49 m(m-4) & =0 \\
\Rightarrow & & \text { Either } m & =0 \text { or } m=4 \\
\Rightarrow & & m & =4 \text { as } m \neq 0
\end{array}
$$

Hence the value of m is 4 .
12. Find how many two-digit numbers are divisible by 6 .

Solution. Two digit number are :

$$
10,11,12, \ldots, 99
$$

\therefore Two-digit numbers which are divisible by 6 are :
Here, $a=12, d=18-12=6 . t_{n}=96$ (last term)

$$
\begin{aligned}
& \therefore \quad \therefore \quad t_{n}=96 \\
& \Rightarrow a+(n-1) d=96 \\
& \Rightarrow \quad \because \quad 12+(n-1) 6=96 \\
& \Rightarrow \quad(n-1) 6=96-12 \\
& \Rightarrow \quad \therefore \quad(n-1) 6=84 \\
& \Rightarrow \quad \because \quad n-1=84 \div 6 \\
& \Rightarrow \quad \because \quad . \quad \therefore \quad n-1=14 \\
& \Rightarrow \quad \therefore \quad \because \quad n=14+1=15
\end{aligned}
$$

\because	\vdots	\cdots	\ddots	
\vdots	\ddots	\ddots		

$$
\begin{aligned}
& \text { Two-digit numbers which } \\
& 12.18, \ldots, 96 .
\end{aligned}
$$

Hence. 15 two-digit numbers are divisible by 6 .
13. In figure, a circle touches all the four sides of a quadrimeral $A B C D$ whose sides are $A B=$ $6 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Find the length of side $A D$.

Solution. We know that when a circle touches all the four sides of a quadrilateral $A B C D$. then

$$
\begin{array}{rlrl}
& & A B+C D & =B C+A D \\
\Rightarrow & 6+8 & =9+A D \\
\Rightarrow & 14 & =9+A D \\
\Rightarrow & & A D & =14-9 \\
\Rightarrow & & A D & =5 \mathrm{~cm}^{\prime}
\end{array}
$$

14. Draw a line segment $A B$ of length 7 cm . Using ruler and compasses, find a point P on $A B$ such that $\frac{A P}{A B}=\frac{3}{5}$.

Solution. Do have

$$
\begin{array}{llrl}
\Rightarrow & & \frac{A P+P B}{A P}= & \frac{3+2}{3} \\
\Rightarrow & & 1+\frac{P B}{A P}=1+\frac{2}{3} \\
\Rightarrow & & \frac{P B}{A P}=\frac{2}{3} \\
\Rightarrow & & \frac{A P}{P B}=\frac{3}{2}
\end{array}
$$

Steps of Construction :

Steps 1. Draw a line segment $A B=7 \mathrm{~cm}$.
Steps 2. Draw a ray $A Y$ making an acute angle with $A B$.
Steps 3. Locate 5 points $A_{1}, A_{2}, A_{3} . A_{4}$ and A_{5} on $A Y$ so that $A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}$. Join $A_{5} B$.
Step 4. With A_{5} as centre mark an are cutting $A_{5} B$ at X.
Step 5. Through A_{3} draw a line $A_{3} P$ parallel to $A_{5} B$ making mo acute angle equal to $A_{5} B$ at A_{3} intersecting $A B$ at a point P.

The point P so obtained is the required point.

15. Find the perimeter of the shaded region in figure, if $A B C D$ is a square of side 14 cm and $A P B$ and $C P D$ are semi-cireles.

Solution. Since $A B C D$ is a square of side 14 cm therefore.
$\therefore \therefore$ Dimeter of the semi-circle $=14 \mathrm{~cm}$
$\therefore \Delta$ Radius of the scmi-circle $=7 \mathrm{~cm}$
Perimeter of shaded region
$=$ Length $A D+$ Length $B C+$ Circumference of sent -circle $A P B$

+ Circumference of semi-eirele $D P C$

$$
\begin{aligned}
& =14 \mathrm{~cm}+14 \mathrm{~cm}+\pi r+\pi r \\
& =14 \mathrm{~cm}+14 \mathrm{~cm}+\frac{22}{7} \times 7+\frac{22}{7} \times 7 \\
& =14 \mathrm{~cm}+14 \mathrm{~cm}+22 \mathrm{~cm}+22 \mathrm{~cm} \\
& =72 \mathrm{~cm} .
\end{aligned}
$$

16. Two cubes each of volume $27 \mathrm{~cm}^{3}$ are joined end to end to form a solid. Find the surface area of the resulting cuboid.

Solution. Let x be the each edge and V be the volume of a cube

$$
\begin{array}{rlrl}
\therefore & \quad \begin{aligned}
V & =x^{3} \\
\Rightarrow & \quad \text { (given) } 27 \mathrm{~cm}^{3}
\end{aligned}=x^{3} \\
\Rightarrow \quad x^{3} & =27 & =(3)^{3} \mathrm{~cm}^{3} \\
\Rightarrow & & x & =3 \mathrm{~cm}
\end{array}
$$

The dimensions of the cuboid formed when two edges of two cubes joined are :

Length of the cuboid $(l)=(3+3)=6 \mathrm{~cm}$
Breadth of the cuboid $(b)=3 \mathrm{~cm}$
Height of the cuboid $(h)=3 \mathrm{~cm}$
Surface area of the cuboid formed

$$
\begin{aligned}
& =2(l b+b h+h l) \\
& =2[6 \times 3+3 \times 3+3 \times 6] \mathrm{cm}^{2} \\
& =[2(18+9+18)] \mathrm{cm}^{2} \\
& =[2 \times 45] \mathrm{cm}^{2} \\
& =90 \mathrm{~cm}^{2}
\end{aligned}
$$

A cone of height 20 cm and radius of base $\frac{\mathrm{cm}}{}$ is made up of modelling clay A child reshapes it in the form of a sphere. Find the diameter or tine sphere.

Solution. Height of a cone $(h)=20 \mathrm{~cm}$

$$
\text { Radius of a cone }(r)=5 \mathrm{~cm}
$$

Let R be the radius of a sphere.
It is given that a child reshapes cone in the form of a sphere.
\therefore Volume of a sphere $=$ Volume or a a one

$$
\begin{aligned}
& \Rightarrow \quad \because \quad \frac{4}{3} \pi R^{3}=\frac{1}{3} \pi r^{2} h \\
& \Rightarrow \quad \because \quad 4 R^{2}=2^{2} h \\
& \Rightarrow \quad \quad \quad A R^{3}=(5)^{2} \times 20 \\
& \Rightarrow \quad R^{3}=\frac{500}{4}=125 \\
& \begin{array}{c}
\Rightarrow Q^{2} \quad R^{3}=(5)^{3} \mathrm{~cm} \\
R=5 \mathrm{~cm}
\end{array}
\end{aligned}
$$

Hence, diediameter of the sphere $=2 R=(2 \times 5) \mathrm{cm}=10 \mathrm{~cm}$.
17. Find the yalues of y for which the distance between the points $A(3,-1)$ and $B(11, y)$ is 10 units.

Solution Here, $A(3,-1)$ and $B(11, y)$ be the given points. Then

$$
A B=10 \text { units (given) }
$$

$$
\begin{array}{rlrl}
\Rightarrow & \sqrt{(11-3)^{2}+(y+1)^{2}} & =10 \\
\Rightarrow & (8)^{2}+(y+1)^{2} & =(10)^{2} \\
\Rightarrow & \quad(y+1)^{2} & =(10)^{2}-(8)^{2} \\
\Rightarrow & y^{2}+2 y+1 & =100-64 \\
\Rightarrow & y+2 y-35 & =0 \\
\Rightarrow & y+7 y-5 y-35 & =0 \\
\Rightarrow & y(y+7-5(y+7) & =0 \\
\Rightarrow & (y+7)(y-5) & =0 \\
\Rightarrow & y+7 & =0 & \text { or } \\
\Rightarrow & y-5 & =0 \\
\Rightarrow & y & =-7 & \text { or }
\end{array}
$$

Hence, the values of y are -7 or 5 .
18. A ticket is drawn at random from a bag containing tickets numbered from 1 to 40 . Find the probability that the selected ticket has a number which is a multiple of 5 .

Solution. Total number of tickets in a bag, numbered from 1 to 40 are 40.
\therefore Total number of outcomes in which one ticket is drawn are 40.
Let A be the event that "the selected ticket number which is mumple of 5 ". There are 8 tickets numbered multiple of 5 , i.e.. $5.10 .15 .20 .25,30.35,40$.
\therefore Number of outcomes favourable to event $A=8$
Hence, required probability $P(A)=\frac{8}{40}=\frac{1}{5}$

Section ©

Question numbers 19 to 28 carry 3 marks each.
19. Find the roots of the following giodratic equation :

$$
x^{2}-3 \sqrt{5} x+10=0
$$

Solution. Given $x^{2}-3 \sqrt{5} x+10=0$.
Here $a=1, b=-3 \sqrt{5}$ and $c=10$

$\mathcal{L} \quad x_{x}=\frac{3 \sqrt{5}+\sqrt{5}}{2}$ or $x=\frac{3 \sqrt{5}-\sqrt{5}}{2}$

$$
\Rightarrow \quad x=2 \sqrt{5} \quad \text { or } x=\sqrt{5}
$$

Hence. the roots of given quadratic equation are $2 \sqrt{5}$ and $\sqrt{5}$.
Alternative method:
Given

$$
x^{2}-3 \sqrt{5} x+10=0
$$

$\Rightarrow \quad x^{2}-2 \sqrt{5} x-\sqrt{5} x+10=0$
$\Rightarrow \quad x(x-2 \sqrt{5})-\sqrt{5}(x-2 \sqrt{5})=0$
$\Rightarrow \quad(x-2 \sqrt{5})(x-\sqrt{5})=0$
$\Rightarrow x-2 \sqrt{5}=0 \quad$ or $x-\sqrt{5}=0$
$\Rightarrow \quad x=2 \sqrt{5} \quad$ or $\quad x=\sqrt{5}$
Hence, the roots of the given quadratic equation are $2 \sqrt{5}$ and $\sqrt{5}$.
40.

Solution. Let the first tern and common difference of A.P. be fand d, respectively.
Let $a_{4} a_{6}$ and a_{13} denote the 4 th term. 6 th term and 13 th term of an A.P., then.
$\Rightarrow \quad \therefore \quad 9=a+3 d$

$$
\therefore \text { (1) }\left[\because a_{4}=9(\because n=4]\right.
$$

Let a_{4}, a_{6} and a_{13} denote the 4

$$
a_{4}=a+(4-1) d
$$

It is given that the sum of its sixth term and himeenth termis 40,
\therefore
20. Find an A.P. whose fourth term is 9 and the sum of its sixth term and thirteenth term is
$\therefore \quad \therefore \quad \therefore \quad a_{6}+a_{13}=40$ (given)
$\Rightarrow \quad[a+(6-1) d]+[a+(13-1) d]=40$
$\Rightarrow \quad \therefore \quad \because(a+5 d)+(a+12 d)=40$
$\Rightarrow \quad \therefore \quad 2 a+17 d=40$
Multiplying (1) by 2 and subtracting from (2) we get
$\Rightarrow \quad(2 a+17 a)-2(a+3()=40-2(9)$
$\Rightarrow \quad \because \quad \therefore \quad 11 d=22$
$\Rightarrow \quad \therefore \quad d=2$
From (1) and (3). we get

$$
\begin{align*}
& \Rightarrow \quad a+3(2)=9 \tag{3}\\
& \Rightarrow \quad a+6=9 \\
& \Rightarrow \quad a=9-6=3
\end{align*}
$$

Thus, the A.P is $3,5,7,2$.
21. In figure, a triangle $P Q R$ is drawn to circumseribe a circle of radius 6 cm sueh that the segments $Q T$ and $T R$ info which $Q R$ is divided hy the point of contaet T, are of lengths 12 cm and 9 em respectively. 廷 the areaf of $\triangle P Q R=189 \mathrm{~cm}^{2}$, then find the lengths of sides $P Q$ and $P R$.

Solution, Let a triongle $P Q R$ be drawn to circunscribe a circle with centre O of radius 6 em such that the segment $Q T$ and $T R$ into whiel $Q R$ is divided by the point of contact T are of lengths 12 cm and 9 cm respectively.

Since the tangents drawn from an external point to a cirele are equal in length.

$$
\begin{array}{lll}
\therefore & P V=P U & \ldots(1)[\text { Tangents from } P] \\
Q V=Q T & \ldots(2)[\text { Tangents from } Q] \\
R T=R U & \ldots(3)[\text { Tangents from } R]
\end{array}
$$

It is given that $Q T=12 \mathrm{~cm}$ and $T R=9 \mathrm{~cm}$
Therefore from (2) and (3), we have :
$Q V=12 \mathrm{~cm}$ and $R U=9 \mathrm{~cm}$
Let $P U=P V=x \mathrm{~cm}_{+}$then

$$
\begin{aligned}
& P Q=P V+V Q=(x+12) \mathrm{cm}, Q R=Q T+T R=(12+9) \mathrm{cm}=2 \mathrm{~cm} \\
& R P=R U+P U=(9+x) \mathrm{cm} .
\end{aligned}
$$

Now join $O Q, O R$ and $O P$ and draw perpendicilars $O U$ and $O V$ on $R R$ pad $P Q$ respectively.
From Tigure,

$$
\text { Area ol } \triangle P Q R=\text { Area of } \triangle O P Q+\text { Area of } \triangle O Q R+\text { Ara of } \triangle O R P
$$

\Rightarrow (given) $189 \mathrm{~cm}^{2}=\frac{1}{2} \times P Q \times$ radius of a circle $O V+\frac{1}{2} \times Q R \times$ radius of a circle $O T$ $+\frac{1}{2} \times R P \times$ radius of a circle $0<$
$\Rightarrow \quad 189=\frac{1}{2} \times(x+12) \times 6+\frac{1}{2} \times 2 \times 6+\frac{1}{2} \times(9+x) \times 6$
$\Rightarrow \quad 378=(x+12) \times 6+21 \times 6+(9+x) \times 6$
$\Rightarrow \quad \therefore \quad 63=(x+12)+21+(9) * x)$
$\Rightarrow \quad \therefore \quad \therefore \quad 63=2 r+42$.
$\Rightarrow \quad \therefore \quad 2 x=63-42$

Hence, the length of sides $P Q$ and $P R$ are

$$
x+12=10.5+12=22.5 \mathrm{~cm} \text { and } 9+x=9+10.5=19.5 \mathrm{~cm} \text { respectively. }
$$

28. Draw a pair of tangents to acircle of radius 3 cm , which are inclined to each other at an angle of 60°.

Solution. Steps of/Construction :

1. Take a point O on the plane of the paper and draw a eircle of radius $O A=3 \mathrm{~cm}$.
2. Extend $O A$ t $O B$ such that $O A=A B=3 \mathrm{~cm}$.
3. With A a centre draw a círele of redius $O A=A B=3$ em. Suppose it intersect the circle drawn in step 1 at the point P and Q.
4. Join $B P$ and $B Q$.

Then $B P$ and $B Q$ are the required tangents which are inclined to each other at angle of 60° (see nigure)

For justification of the construction :

In $\triangle O A P$.we have

$$
O A=O P=3 \mathrm{~cm}(=\text { Radus })
$$

Also, $\quad A P=3 \mathrm{~cm}(=$ Radius of circle with centre $A)$.
$\triangle O A A^{P} P$ is equilateral

$$
\begin{array}{ll}
\Rightarrow & \angle P A O=60^{\circ} \\
\Rightarrow & \angle B A P=120^{\circ} .
\end{array}
$$

In $\triangle B A P$, we have

$$
\begin{aligned}
& A B \\
\therefore \quad & A P \text { and } \angle B A P=120^{\circ} \\
\therefore \quad \angle A B P & =\angle A P B=30^{\circ}
\end{aligned}
$$

Similarly we can prove that

$$
\begin{array}{ll}
\angle A B Q=\angle A Q B=30^{\circ} \\
\Rightarrow & \angle P B Q=60^{\circ} .
\end{array}
$$

Draw a right triangle in which the sides (other than ligpotenuse) are of lengths 4 cm and 3 cm . Then constrict another trangle whose sides ane $\frac{3}{5}$ times the corresponding sides of the given triangle.

Solution. Steps of Construction:

1. Draw a litie segment $B C=4 \mathrm{~cm}$.
2. At B construct $\angle C B X=90$
3. With B as centre and/radius 3 cm . draw an are interseeting the line $B X$ at A.
4. Join $A C$ to obtain the required $\triangle A B C$.
5. Draw any ray $B X$ making at acute angle with $B C$ on the opposite side of the vertex A.
6. Loeate 5 points the greater of 3 and 5 in $\frac{3}{5}$) $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5} on B yo that $B B_{1}=B_{1} B_{2}=$ $B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}$.
7. Joir $B_{5} C$ and draw a line through $B_{3}\left(3\right.$ rd point, 3 being smaller of 3 and 5 in $\left.\frac{3}{5}\right)$ parallel to $B_{5} C$ interseeting $B C$ at C^{\prime}.

8. Draw a line through C^{\prime} parallel to line $C A$ to intersect $B A$ at A^{\prime} (see figure). Then $A^{\prime} B C^{\prime}$ is the required triangle.

9. A chord of a circle radius 14 cm subtends an angle of 120° at the centrc. Find the area of the corresponding minor segment of the circle.

Solution. We have

Area of a sector $O A C B$ of a circle of radius 14 cm subtends an angle of 120° at the centre

$$
\begin{aligned}
& =\frac{120^{\circ}}{360^{\circ}} \pi r^{2} \\
& =\frac{1}{3} \pi(14)^{2} \mathrm{~cm}^{2} \\
& =\left(\frac{1}{3} \times \frac{22}{7} \times 196\right) \mathrm{cm}^{2} \\
& =\frac{22 \times 28}{3} \mathrm{~cm} \\
& =\frac{616}{3} \mathrm{~cm}^{2}=205.33 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of a triangle $O \& B$ subtend an angle 120° at O.

$$
\begin{aligned}
& \frac{1}{2} r^{2} \sin \theta \\
= & \frac{1}{2} \times(14)^{2} \sin 120^{\circ} \mathrm{cm}^{2} \\
= & 9 \sin \left(90^{\circ}+30^{\circ} \mathrm{cm}^{2}\right. \\
= & 98 \cos 30^{\circ} \mathrm{cm}^{2} \\
= & 98 \times \frac{\sqrt{3}}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =49 \sqrt{3} \mathrm{~cm}^{2} \\
& =(49 \times 1.73) \mathrm{cm}^{2} \\
& =84.77 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of minor segment of the circle

$$
\begin{aligned}
& =\text { Area of sector } O A C B-\text { Area of } \triangle O A B \text { subtends an angle } 120^{\circ} \\
& =(205.33-84.77) \mathrm{cm}^{2} \\
& =120.56 \mathrm{~cm}^{2}
\end{aligned}
$$

24. An open metal bucket is in the shape of a frustum of a cone of height 21 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the cost of mitherifh can completely fill the bucket at $₹ \mathbf{3 0}$ per litre.

Solution. The contaner is a frustum of a cone of height 21 cm with radii of its reper and lower ends are 20 cm and 10 cm respectively.
$\therefore \quad \quad \quad h=21 \mathrm{~cm}, R=20 \mathrm{~cm}$ and $r=10 \mathrm{~cm}$
Volunte of the open metal bucket in the form of a frustum of a cone

$$
\begin{aligned}
& =\frac{1}{3} \pi h\left[R^{2}+R r+r^{2}\right] \\
& =\frac{1}{3} \times \frac{22}{7} \times 21\left[(20)^{2}+(20)(10)+(10)^{2}\right. \\
& =22[400+200+100] \mathrm{cm}^{3} \\
& =22 \times 700 \mathrm{~cm}^{3} \\
& =15400 \mathrm{~cm}^{3} \\
& =15400 \mathrm{cc} . \\
& =\frac{15400}{1000} \text { litres } \\
& =15.4 \text { litres }
\end{aligned}
$$

Therefore, the quantity of milk $=$ volume of the open metal bucket $=15.4$ litres
Thus, cost of the milk @ ₹ 30 per litre

$$
\begin{aligned}
& =₹(15.4 \times 30) \\
& =₹ 462
\end{aligned}
$$

25. Point $P(x, 4)$ lies oon the linescgment joining the points $A(-5,8)$ and $B(4,-10)$. Find the ratio in which point P divides the line segment $A B$. Also find the value of x.

Solution. Let the point $P(x, 4)$ divides the line segment joining the points $A(-5,8)$ and $B(4,-10)$ in the ratio $K: 1$.

Then the cootdinates of P are $\left(\frac{4 K-5}{K+1}, \frac{-10 K+8}{K+1}\right)$
But the coordinates of P are given as $(x, 4)$.
$\therefore \frac{4 K-5}{K+1}=x$ and $\frac{-10 K+8}{K+1}=4$

Consider. $\frac{-10 K+8}{K+1}=4$

$$
\left.\begin{array}{lrl}
\Rightarrow & -10 K+8 & =4 K+4 \\
\Rightarrow & 4 K+10 K & =8-4 \\
\Rightarrow & 14 K & =4 \\
\Rightarrow & & K
\end{array}\right)=\frac{2}{7} .
$$

$\Rightarrow P$ divides the line seginent $A B$ it ratio $\frac{2}{7}: 1$ ie., $2: 7$
Substituting $K=\frac{2}{7}$ in $x=\frac{4 K-5}{K+1}$, we get

$$
\begin{aligned}
& \Rightarrow \quad \therefore \quad x=\frac{8-35}{2+7} \\
& \Rightarrow \quad \therefore \quad x=\frac{-27}{9} \\
& \Rightarrow \quad
\end{aligned} \quad x=-3 .
$$

26. Find the area of quadriateral $A B C D$, whose vefices are $A(-3,-1), B(-2,-4), C(4,-1)$ and $D(3,4)$.

Solution. By joining A to C, we will get poo triangles $A B C$ and $A C D$.
Now, the area of $\triangle A B C$

$$
\begin{aligned}
&=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
&\left.\left.=\frac{1}{2}[(-3)(-4+1)+(-2)(-1+))\right]+4(-1+4)\right] \\
&=\frac{1}{2}\left[(-3)(-3)+\left(y_{2}\right)(0)+4(3)\right] \\
&=\frac{1}{2}[9+0+12] \\
&\left.\left.=\frac{21}{2} \text { sq units }\right)\right] \\
& \text { Also, the ata of } \Delta 4 C D \\
&= \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
&\left.=\frac{1}{2}(-3)(-1-4)+4(4+1)+3(-1+1)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}[(-3)(-5)+4(5)+3(0)] \\
& =\frac{1}{2}[15+20+0] \\
& =\frac{35}{2} \text { sq units }
\end{aligned}
$$

So, the area of the quadriateral $A B C D$

$$
=\text { Area of } \triangle A B C+\text { Area of } \triangle A C D
$$

$=\frac{21}{2}+\frac{35}{2}$ sq. units
$=\frac{56}{2}$ sq. units
$=28$ sq. units.

Or

Find the area of the triangle formed by joining the mid-boints of the sides of the triangle whose vertiees are $A(2,1), B(4,3)$ and $C(2,5)$.

Solution. Let $A(2,1), B(4,3)$ and $C(2,5)$ be the vertices of atring $A B C$ respectively. Let D, E and F be the mid-point of $A B, B C$ and $C A$, then

Coordinates of $D\left(\frac{2+4}{2}, \frac{1+3}{2}\right)$ i.e., $D(3,2)$
Coordinates of $E\left(\frac{4+2}{2}, \frac{3+5}{2}\right)$ i.e., $E(3,4)$
and coordinates of $F\left(\frac{2+2}{2}, \frac{1+5}{2}\right)$ i.e $\int F(2,3)$

Here, $x_{1}=3, y_{1}=2, x_{2}=3, y_{2}=4, x_{3}=2, y_{3}=3$
\therefore Area of $\triangle D E F=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
=\frac{1}{2}[3(4-3)+3(3-2)+2(2-4)]
$$

$$
=\int_{2}^{1}[3(1)+3(1)+2(-2)]
$$

$$
\frac{1}{2}[3+3-4]
$$

$$
=1 \text { sq, unit }
$$

27. From the tor of a vertical tower, the angles of depression of two cars, in the same straight line with the base of the tower, at an instant are found to be 45° and 60°. If the ears are 100 m apart and are on the same side of the tower, find the height of the tower.
[Use $\sqrt{3}=1,73$]
Solution. Let $C D=h \mathrm{~m}$ be a ventical tower.
Aet A and B the position of the two cars in the same straight line with the base of a tower.
$\operatorname{Det} \angle X D A=45^{\circ}$ and $\angle X D B=60^{\circ}$.

Distance between the cars $A B=100 \mathrm{~m}$.
In right triangle $D B C$, we have

$$
\begin{align*}
& & \tan 60^{\circ} & =\frac{D C}{B C} \\
& \Rightarrow & \sqrt{3} & =\frac{h}{x} \\
& \Rightarrow & x & =\frac{h}{\sqrt{3}} \tag{1}
\end{align*}
$$

In right triangle $D A C$, we have

$$
\begin{array}{rlrl}
& \quad \tan 45^{\circ} & =\frac{D C}{A C} \\
\Rightarrow \quad & \ddots \quad 1 & =\frac{h}{100+x} \\
& \Rightarrow \quad & 100+x & =h \\
& \Rightarrow & x & =h-100 \tag{2}
\end{array}
$$

From (1) and (2), we have

$$
\begin{aligned}
& \frac{h}{\sqrt{3}}=h-100 \\
& \Rightarrow \quad \because \quad \sqrt{3} h=3(h-100) \\
& \Rightarrow \quad \because \sqrt{3} h=3 h-300 \\
& \Rightarrow 3 h-\sqrt{3} h=300 \\
& \Rightarrow h(3-\sqrt{3})=300 \\
& \Rightarrow \quad h=\frac{300}{3-\sqrt{3}} \\
& \Rightarrow \quad \because \quad h=\frac{(300)(3+\sqrt{3})}{(3)^{2}-(\sqrt{3})^{2}} \\
& \left.\Rightarrow \quad \therefore \quad \therefore=\frac{300(3+\sqrt{3})}{9-3} \quad\right) \\
& \Rightarrow \quad h=\frac{300}{6}(3+\sqrt{3}) \mathrm{m} \\
& \Rightarrow \quad \quad \quad \quad \quad=50(3+1.73) \mathrm{m} \\
& \Rightarrow \therefore \quad \because \quad h=50(4,73) \mathrm{m} \\
& \Rightarrow \quad \therefore \quad A=236.5 \mathrm{~m}
\end{aligned}
$$

Hence, the height of the tower is 236.5 m .
28. Two diceare rolled once. Find the probability of getting such numbers on the two dice, whose product is 12 .

Solution. When two dice are rolled once, then the possible outcomes of the experiment are listed in the table.

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$\frac{(3,6)}{4}$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

So, the number of possible outcomes $=6 \times 6=36$
Let A be the cevent of getting such numbers on the two dice, whose product is 12 , then the ontcomes fivourable to A are

$$
A=\{(2,6),(6,2),(3,4),(4,3)\}
$$

\therefore Fuvourable number of outcomes $=4$
\therefore Probability of getting such numbers on the two dice, whose product $1 / 2$ is

$$
P(A)=\frac{4}{36}=\frac{1}{9}
$$

Or
A hox contains 80 discs which are numbered from 1 to 80 . If one dise is drawn at random from the box, find the probability that it bears a perfect square number.

Solution. Total number of dises which are numbered from 1 to 80 are 80 .
\therefore Total number of outcomes in which one dise can be drapy are 80 .
Let A be the event that "the dise drave at random bears a perfect square number".
The number of outcomes favourable to event $A=8\left(\right.$ (viz, $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, 7^{2}, 8^{2}$)
So,

$$
P(A)=\frac{8}{80}=\frac{1}{10}
$$

Section D^{\prime}

Question numbers 29 to 34 carry 4 marks each.
29. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

Solution, Given : A circle $C(O, r)$ and a tangent $A B$ at a point P.
To prove; $O P \perp A B$.
Construction : Take any point Q, other than P, on the tangent $A B$. Joint $O Q$.
Suppose $O Q$ meets the circle $\begin{aligned} & \\ & R \text {. }\end{aligned}$
Proof: We know thethantong all line-segments joining the point O to a point on $A B$, the shontest one is perpendicular to $A B, S o$, to prove that $O P \perp A B$, it sufficient to prove that $O P$ is shorter than any other segmentjoining $0 \% 0$ any point of $A B$.

Thus, $O R-$ shonter than any other segment joining O to any point of $A B$.
Hence, $O P \perp A B$,
30. The first and the last terms of an A.P. are 8 and 350 respeetively. If its common difference is 9 , how many terms are there and what is their sum?

Solution. Let a be the first term and d the common difference of an A.P., then $a=8$ and $d=9$ (given).

Let $l=a_{n}=350$ (given) be the nth tem of an A.P., then

$$
350=a_{n}=a+(n-1) d
$$

$\Rightarrow \quad 350=8+(n-1) 9$
$\Rightarrow \quad 342=(n-1) 9$

$\Rightarrow \quad n-1=38$
$\Rightarrow \quad n=39$
$\therefore \quad \therefore S_{n}=\frac{n}{2}\left[a+a_{n}\right]$
$\Rightarrow \quad \therefore \quad S_{39}=\frac{39}{2}[8+350]$
$\Rightarrow \quad S_{39}=\frac{39}{2}[358]$
$\Rightarrow \quad S_{39}=-39 \times 179=6981$
Hence, the number of terms of an A.P are 39 and the sum or 39 terns is 6981.
How many nultiples of 4 lie hetween 10 and 250 . Alse find their sum.
Solution. The first term between 10 and 250 . which is a matiple of 4 is 12 and second term is 16 . Clearly first term $=a=12$

Second term $=a+d=16$
and, common difference $(d)=16-12=4$
Last term which is multiple of 4 is 248 .
Now. we have to find the sum of n terns orme A:P.
12. 16. $20, \ldots, 248$
$\begin{array}{rlrl} & & & a_{n} \\ \Rightarrow \quad & =a+(n-1) d \\ 248 & =12+(n-1) 4\end{array}$
$\Rightarrow \quad 248-12=(n-1) 4$
$\Rightarrow \quad \therefore \quad 236=(n-1) 4$
$\Rightarrow \because \therefore n-1=236 \div 4$
$\Rightarrow \quad \because \quad n-1=59$
$\Rightarrow \quad n=50+1=60$.
Now, $\quad S_{n}$ Sumof n terms of the A.P. 12. 16. 20.... 248
$\Rightarrow \quad S_{60}=\frac{60}{2}(12+2481$
$\Rightarrow \quad$ \& $\begin{gathered}S_{60}=30[260] \\ \Rightarrow \\ \Rightarrow \quad 30 \times 260 \\ S_{60}=7800\end{gathered}$
Hence, the number of terms of the A.P. are 60 and the sum of 60 terms is 7800 .
31. A train travels 180 km at a uniform speed. If the speed had been $9 \mathrm{~km} /$ hour more, it would have taken 1 hour less for the same journey. Find the speed of the train.

Solution. Let the speed of the trim n be r km/hour.
When the sped has been $9 \mathrm{ki} /$ hour more, then the new speed of the tron is $(x+9) \mathrm{km} /$ hour.
Time taken by the train with speed x knhour for al journey of $180 \mathrm{~km}=\frac{180}{x}$ hours.
Time taken by the trail n with new speed $(r+9)$ kn/hour for a journey of $180 \mathrm{~km}=\frac{180 \alpha}{(x+9)}$ hears $)$
It is given that the train takes 1 hour less for a journey of 180 km if the speed had been 9 kn/hour more from its speed.

$$
\begin{aligned}
& \frac{180}{x}-\frac{180}{x+9}=1 \\
& \Rightarrow \quad \text { - } \quad \text { - } 180 \times\left[\frac{1}{x}-\frac{1}{x+9}\right]=1 \\
& \Rightarrow \quad \text { - } 180 \times\left[\frac{r+9-\mathrm{r}}{x(x+9)}\right]=1 \\
& \Rightarrow \quad, \quad 180 \times 9=x(x+9) \\
& \Rightarrow \quad 2 \quad 2 \quad r^{2}+9 x-1620=0 \\
& \Rightarrow \quad, \quad x^{2}+45 x-36 x-1620=0 \\
& \Rightarrow \quad, \quad x(r+45)-36(r+45)=0 \\
& \Rightarrow \quad \text {, } \quad(r+45)(r-36)=0 \\
& \Rightarrow \text { Either } r+45=0 \text { or } r-36=0 \\
& \Rightarrow \text { Either } \quad x=-45 \text { or } \quad \mathrm{r}=36 \\
& \Rightarrow \quad \text {, } \quad \text {, } \quad x=36
\end{aligned}
$$

Hence, the speed of the trait is $36 \mathrm{~km} / \mathrm{hon}$.

ord

Find the roots of the equation $\frac{1}{2 x-3}+\frac{1}{x-5}=1, x \neq \frac{3}{2}, 5$.
Solution. We have.

$$
\begin{aligned}
& \frac{1}{2 x-3}+\frac{1}{x-5}-\alpha \quad, \quad=2 / 5 \\
& \Rightarrow \quad \frac{1-1}{2 x-3}=1-\frac{1}{x-5} \\
& \Rightarrow \quad \frac{1}{2 x-3} \frac{x-5-1}{r-5}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \text {, } \quad \text {, } \quad x=\frac{16 \pm \sqrt{(-16)^{2}-(4)(2)(23)}}{2(2)} \\
& {\left[\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]}
\end{aligned}
$$

32. In figure, three eircles each of radius 3.5 em are drawn in such a way that each of them touches the other two. Find the area enelosed between fhese three cireles (shaded region).

$$
\left[\operatorname{Use} \pi=\frac{22}{7}\right]
$$

Solution. Let A, B and $C B C$ the centres of three circles. Join $A B, B C$ and $C A$.

Since the radus of ench circle is 3.5 cm, then the sides $A B=7 \mathrm{~cm}$, $B C=7 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$ respectively.

Area of an equilatecal triangle $A B C$

$$
(\text { (} 1 \text { (}) \text {) }=49 \sqrt{3} \mathrm{~cm}^{2} \text {) } 0
$$

Let the area of three sectors each of angle 60° in a circle of radius 3.5 cm be A , then $A=3 \times$ Area of one sector of an angle of 60° in a cirele of radins 3.5 cm .

$$
\begin{aligned}
& =3 \times\left[\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(3.5)^{2}\right] \mathrm{cm}^{2} \\
& =\left[3 \times \frac{1}{6} \times \frac{22}{7} \times 35 \times 3.5\right]^{2} \\
& =(11 \times 0.5 \times 3.5) \mathrm{cm}^{2} \\
& =(11 \times 1.75) \mathrm{cm}^{2} \\
& =19.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, required area of the shaded region

$$
\begin{aligned}
& =\text { Arca of } \triangle A B C-A \\
& =(49 \sqrt{3}-19.25) \mathrm{cm}^{2} \\
& =\left(\frac{49 \times 1.73}{4}-19.25\right) \mathrm{cm}^{2} \\
& =(49 \times 0.4325-19.25) \mathrm{cm}^{2} \\
& =(211925-19.250) \mathrm{cm}^{2} \\
& =1.9425 \mathrm{~cm}^{2} \\
& =1.94 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\left[\because \text { Area of sector }=\frac{0}{360^{\circ}} \pi r^{2}\right]
$$

33. Water is flowing at the rate of $15 \mathrm{kn} / \mathrm{hour}$ through a pipe of diameter 14 cm into a cuhoidal pond which is 50 m long and 44 m wide. Ind that time will the level of water in the pond rise hy 21 cm ?

Solution. Let the etbical pond be filled in 8 holro. Sincenvater is flowing at the rate of $15 \mathrm{kn} / \mathrm{hour}$, therefore length of the water flows through the phe in x hours $=15 x \mathrm{~km}=15000 \mathrm{x}$ metres $=(h)$ height of the pipe

Internal diameter of a pipe $=14 \mathrm{~cm}$
\therefore Internal radisu of a pape $(r) \frac{14}{2} \mathrm{~cm}=7 \mathrm{cmi}=\frac{7}{100} \mathrm{~m}$.
Volume of the water flows from the cylindrical pipe in x hours

Also, volume of cubbidal pond $=\left(50 \times 44 \times \frac{21}{100}\right) \mathrm{m}^{3}$
where $($ (lengh of a cuboidal pond) $)=50 \mathrm{~m}$
b (widh of a cuboilal pond $)=44 \mathrm{n}$
A. h_{1} (heigh of a cuboidal pond in which the level of water of pond incercases) $-21 \mathrm{~cm}=\frac{21}{1(0)}$,

$$
\begin{aligned}
& =\pi r^{2} h \\
& =\left(\frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} \times 15000 x\right) \mathrm{m}^{3} \\
& =\left(22 \times \frac{1}{10} \times 7 \times 15 r\right) \mathrm{m}^{3} \\
& \mathrm{C} 1 \mathrm{C} \times 3 \mathrm{rm}^{3} \\
& \text { - } 231 \mathrm{~mm} \text {. }
\end{aligned}
$$

Since the chboidal pond is filled in x hours. therefore, the
Volume of the water flows in the ciboital pond in x hours $=$. Volume of a pipe

$$
\begin{aligned}
& \Rightarrow 50 \times 44 \times \frac{21}{100}=231 x \\
& \Rightarrow \text { ar } \quad x=\frac{50 \times 44 \times 21}{231 \times 100} \text { hours } \\
& \Rightarrow \\
& \Rightarrow \\
& x=\frac{44}{11 \times 2} \text { hours } \\
& x=2 \text { hours }
\end{aligned}
$$

Hence, the level of water in poid will rise by 21 cm in 2 hours.
34. The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point 10 m vertically above the first, its angle of elevation is 30°. Find the height of the tower.

Solution. Let D be a point on the ground and C be another point 10 y vertically above the first point D.

Let $h=A B$ be the height of the tower, then

$$
C D=10 \mathrm{~m}, B E=C D=10 \mathrm{~m} \text { and } A E=A B-B E=(h-10) \mathrm{m}
$$

So, $\angle A D B=60^{\circ}$ and $\angle A C E=30^{\circ}$
In right triangle $A D B$ we have

$$
\begin{array}{r}
\quad \tan 60^{\circ}=\frac{A B}{D B} \\
\quad \quad \begin{array}{r}
3
\end{array} \quad \frac{h}{D B} \\
\Rightarrow \quad D B=\frac{h}{\sqrt{3}}
\end{array}
$$

- In right triangle $A C E$, we have

$$
\begin{align*}
& \tan 30^{\circ}=\frac{A E}{C E} \\
& \Rightarrow \text {, } \frac{1}{\sqrt{3}}=\frac{h-10}{D B} \\
& \Rightarrow \quad D B=\sqrt{3}(h-10) \tag{2}\\
& {[\because C E=D B]}
\end{align*}
$$

From (1) and (2), we have

$$
\begin{aligned}
& \quad 5 \quad \frac{h}{\sqrt{3}}=\sqrt{3}(h-10) \\
& \begin{array}{l}
\Rightarrow \quad \& \quad, \quad h-3(h-10) \\
\Rightarrow \quad, \quad=3 h-30
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3 h-h=30 \\
& 2 h=30 \\
& h=15 \mathrm{~m}
\end{aligned}
$$

Hence. the height of the tower is 15 m .

SET II

Section 'A'

Question numbers 1 to 10 are of one mark each.
9. The
(a) $2 \pi r^{2}$
(b) $3 \pi r^{2}$
(c) $4 \pi r^{2}$
(d) $\frac{2}{3} \pi r^{3}$
radius $\mathrm{rcm}\left(\mathrm{in} \mathrm{cni}^{2}\right)$ is

Solution. Chioice (b) is correct.
The surface area of a solid hemisphere of radius $r \mathrm{~cm}\left(\right.$ in em^{2})

$$
\begin{aligned}
& =\text { Surface area of a hemisphere }+ \text { Area of a circle at the top } \\
& =2 \pi r^{2}+\pi r^{2} \\
& =3 \pi r^{2}
\end{aligned}
$$

10. A card is drawn from a well-shuffed deek of 52 playing cards. The probability that the card is not a red king, is
(a) $\frac{1}{13}$
(b) $\frac{12}{13}$
(c) $\frac{1}{26}$

Solution. Choice (d) is correct.

As there are 2 red kings in a well-shuffled deck of 52 playing cards
Number of red kings $=2$
Number of not a red king $=$ Total number card -2 Red kings

$$
=52-2
$$

\therefore Probability that the card is not a red king $-\frac{50}{52}=\frac{\mathbf{2 5}}{26}$.

Section 'B'

Question numbers 11 to 18 caror 2 marks cach
17. Which term of the A. $, 3,14,25,36, \ldots$ will be 99 more than its 25 th tern?

Solution. Given APP is $3 \ldots 14.25 .36, \ldots$
Here.

$$
\begin{align*}
& a=\text { first tarm }-3 \\
& d=\text { commog difference } \\
&=14-3-10 \tag{1}
\end{align*}
$$

Let the nth term of the given A.P be 99 nore than its 25 th term. Thein

$$
a_{n}=a_{25}+99
$$

$$
\begin{aligned}
& \left.\Rightarrow \quad \Rightarrow \quad a+(1 n-1) d=a+(25-1) d+99 \quad \text { a } \quad \Rightarrow \quad \text { a } \quad \text { a } \quad \text { ath terin }\left(a_{n}\right)=a+(n-1) d\right] \\
& \left.\Rightarrow \quad x_{0}-1-24\right) d=99 \\
& \Rightarrow \quad((n-25) \times 11=99 \\
& \Rightarrow \sim \quad n-25=9 \\
& {[\because d=11]}
\end{aligned}
$$

$$
\Rightarrow \quad n=9+25
$$

Hence, the 34 th term of the given A.P. is 99 more than its 25 th term:
18. In figure, a semi-circle is drawn with O as centre and $A B$ as diancter Scmi-circles are drawn with $A O$ and $O B$ as diameters. If $A B=28 \mathrm{~m}_{3}$ find the perimeter of the shaded gegion.

Solution. Diameter of a big semi-circle $=28 \mathrm{~cm}$
\Rightarrow Radius of a big semi-cirele $=28 \div 2=14 \mathrm{~cm}$
Diameters of small semi-circtes is $O A$ or $O B=28 \div 2=14 \mathrm{~cm}$
\Rightarrow Radits of small semi-cireles $-14 \div 2=7 \mathrm{~cm}$
Required perimeter of the shaded region
$=$ Perineter of a big semincincle

+ Perimeter of a smati semi-cideles with radius $r_{1}=\frac{O A}{2}$ and $\frac{O B}{2}=r_{2}$.

$$
\begin{aligned}
& =\pi R+\pi r_{1}+\pi r_{2} \\
& =\pi\left(R+r_{1}+r_{2}\right) \\
& =\pi[14+7+7] \mathrm{cm} \\
& =\left(\frac{22}{7} \times 28\right) \mathrm{cm} \\
& =88 \mathrm{~cm}
\end{aligned}
$$

Section 'C'

Question numbers 19 to 78 cari 3 marks each.

27. A chord of a cirefe of radius 21 cm subtends an angle of 60° at the centre. Find the area of the corresponding nimor segment of the circle.

$$
\left[\text { Usc } \pi=\frac{22}{7} \text { and } \sqrt{3}-1.73\right]
$$

Solution. We have
Arei of a sector $O A \subset B$ of a circle of radius 21 cm subtends an angle of 60° at the centre

$$
\begin{aligned}
& =\frac{60}{36} 0^{\circ} \pi^{2} \\
& =\frac{1}{6} \times \frac{22}{7} \times(21)^{2} \mathrm{~cm}^{2} \\
& =(11 \times 21) \mathrm{cm}^{2}, \\
& =231 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of a triangle $O A B$ subtends an angle 60°

$$
\begin{aligned}
& =\frac{1}{2} r^{2} \sin \theta \\
& =\frac{1}{2} \times(21)^{2} \times \sin 60^{\circ} \mathrm{cm}^{2} \\
& =220.5 \times \frac{\sqrt{3}}{2} \mathrm{~cm}^{2} \\
& =110.25 \times \sqrt{3} \mathrm{~cm}^{2} \\
& =110.25 \times 1.73 \mathrm{~cm}^{2} \\
& =190.7325 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of minor segment of the circle

$$
\begin{aligned}
& =\text { Area of sector - Area of } \triangle O A B \text { subtends an angle of } 600 \\
& =(231-190.7325) \mathrm{cm}^{2} \text {. } \\
& =40.2675 \mathrm{~cm}^{2}
\end{aligned}
$$

28. Point $M(11, y)$ lies on the line segment joining the points $P(15,5)$ and $Q(9,20)$. Find the ratio in which point M divides the line segment $P Q$. Also find the value of y.

Solution. Let the point $M(11, y)$ divides the line segment joining the points $P(15,5)$ and $Q(9,20)$ in the ratio $K: 1$.

Then the coordinates of M are $\left(\frac{9 K+15}{K+1}, \frac{20 K+5}{K+1}\right)$
But the coordinates of M are given as $(1, y)$
$\therefore \quad-\quad \frac{9 K+15}{K+1}=11$ and $\frac{20 K+5}{K+1}=\%$
Consider, $\frac{9 K+15}{K+1}=11$
$\Rightarrow 69 K+15=11 K+11$
$\Rightarrow \quad 11 K-9 K=15-11$
$\Rightarrow \quad 2 K=4$
$\Rightarrow \quad K=2$
$\Rightarrow M$ divides the line segment $P Q$ in die ratio $2: 1$.
Substituting $K=2 \operatorname{int}_{y}=\frac{20 K+5}{K+y}$, we get

Section ${ }^{\text {D }}$

Question numbers 29 to 34 carry 4 marks each.
29. In figure, an equilateral triangle has been inscribed in a circle of radius 6 cm. Find the area of the shaded region.
[Use $\pi=3.14]$

Solution. Let O be the centre of a circle of radius 6 cm and $A B C$ is t e equilateral triangle. From O draw $O D \perp B C$ In $\triangle O B D$, we have

Area of the shaded region

$$
\left(\frac{1}{}\right)-\left[\frac{792}{7}-27 \sqrt{3}\right] \mathrm{cm}^{2}
$$

$$
\begin{aligned}
& \text { - Area of the civele radius } 6 \mathrm{~cm}-\text { Area of equilateral } \triangle A B C \\
& \left.-[\pi \times(6))^{\frac{\sqrt{3}}{4}} \times(6 \sqrt{3})^{2}\right] \mathrm{cm}^{2} \\
& \left.\frac{-22}{2} \times 36-\frac{\sqrt{3}}{4} \times 36 \times 3\right] \mathrm{cm}^{2} \\
& 36\left[\frac{22}{7}, \frac{3 \sqrt{3}}{4}\right] \mathrm{cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{O D}{O B}-\frac{3}{4} \\
& \Rightarrow \text {, } \frac{1}{2}=\frac{O D}{6} \\
& \Rightarrow \quad O D=3 \mathrm{~cm} \\
& \text { and } \quad \sin 60^{\circ}=\frac{B D}{O B} \\
& \Rightarrow \quad-\frac{\sqrt{3}}{2}=\frac{B D}{6} \\
& \Rightarrow \quad B D=3 \sqrt{3} \mathrm{~cm} \\
& \therefore \quad B C=2 B D=2(3 \sqrt{3})=6 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

30. The angles of depression of the top and hottom of a 12 m tall building, from the top of a multi-storeyed huilding are 30° and 60° respectively. Find the height of the multi-storeyed building,

Solution Let $A D=h m$ be the multi-storeyed building and $E C=12 \mathrm{~m}$ be the tall building. From the top of a multistoreyed building the angles of depression of the top and boton of butilding are 30° and 60°. Let $B C=D E=y$ metres, be the distance between the botton of the multi-storeyed building and the bottom of the buitding,

Tticn,,$A B=A D-B D$
$\Rightarrow A B=(h-12)$ metres be the difference of heights between the building and nualti-storeyed building:

In right trithgle $A B C$, we have

$$
\begin{aligned}
& \tan 30^{\circ}-\frac{A B}{B C} \\
& \Rightarrow \quad \text {, } \frac{1}{\sqrt{3}}=\frac{h-12}{y} \\
& \Rightarrow \quad, \quad y=\sqrt{3}(h-12)
\end{aligned}
$$

In right triangle $A D E$ we have

$$
\begin{align*}
& \tan 60^{\circ}=\frac{A D}{D E} \\
& \Rightarrow \quad 2 \quad \sqrt{3}=\frac{n}{y} \\
& \Rightarrow \text {, } \quad y=\frac{h}{\sqrt{3}} \tag{2}
\end{align*}
$$

From (1) and (2) eve get

$$
\begin{align*}
& \sqrt{3}(h-12)=\frac{h}{\sqrt{3}} \\
& \Rightarrow 3(h-12)=h \\
& \Rightarrow 3 h-36=h \\
& \Rightarrow \quad 3 h-h-36 \\
& \Rightarrow \quad 2 h-36 \\
& \Rightarrow \quad h=18 \mathrm{~m},
\end{align*}
$$

Hence, the height of the milti-storeyed buidding is 18 m .
$31 . a$ farmer connects a pipe of internal diameter 20 cm , fronz a canal into a eylindrical tank in his fied, whigh is 19 m in diameter and 4 m deep. If water flows througb the pipe at the rate of $5 \mathrm{~km} / \mathrm{hour}$ in fiom murd time will the tank be filled?

Solution, Let the tank be filled in x hoters.
Since Water is flowing at the rate of $5 \mathrm{~km} / \mathrm{hour}$, therefore, tength of the water flows through the pipe in x liours

$$
\begin{aligned}
& 55 \mathrm{~km} \text {, } \quad 5000 \mathrm{r} \text { metres }=(h) \text { height of the pipe from c canal }
\end{aligned}
$$

Intemal diameter of a pipe from a canal $=20 \mathrm{~cm}$
\therefore Intemal radius of a pipe from a canal $(r)=\frac{20}{2}=10 \mathrm{~cm}=\frac{1}{10} \mathrm{~m}$
Volume of the water that fows from the cylindrical pipe from a canal in x hours

$$
=\pi^{2} h=\left(\frac{22}{7} \times \frac{1}{10} \times \frac{1}{10} \times 5000 \mathrm{x}\right) \mathrm{m}^{3}
$$

Also, volume of the cylindrical tank $=\left(\frac{22}{7} \times 5 \times 5 \times 4\right) \mathrm{m}^{3}$
where r (radius of cylindrical tank) $=\frac{10}{2} \mathrm{~m}=5 \mathrm{~m}$
and h (height of the cylindrical tank) $=4 \mathrm{~m}$ (deep)
Since the tank is filled in x hours, therefore.

Volume of the water that flows in the tank in x hours $=$ Volume of the extindrical tank
\Rightarrow

$$
\frac{22}{7} \times \frac{1}{10} \times \frac{1}{10} \times 5000 x=\frac{22}{7} \times(5 \times 5 \times 4
$$

$$
\Rightarrow
$$

\Rightarrow
Hence, the tank will be filled in 2 hours.

SETIIX

Section,

Question mumbers 1 to 10 are of one mark eagh.

1. A solid sphere of radius r is melted and recast into the shape of a solid cone of height $4 r$. The radius of the base of the cone is
(a) r
(b) $2 r$
(c) $3 r$
(d) $4 r$

Solution. Choice (a) is correct.
Radius of a solid sphere $-\quad$.
Volume of a solid sphere - $4, \pi r^{3}$
Let R and H be the radius and height of the cone, then volume of the cone

\therefore (2) $[\because H=4 r$ (given) $]$
From (1) and (2), we have

$$
\frac{1}{3} \pi R^{2} \times 4 r=\frac{4}{3} \pi r^{3}
$$

$$
\begin{aligned}
& \Rightarrow \quad{ }^{2} \quad R^{2} \times 4 r=4 r^{3} \\
& \Rightarrow \quad R^{2}=r^{2}
\end{aligned}
$$

Hence, the radius of the cone is $r \mathrm{~cm}$.
2. A card is drawn from a well-shumled deck of 52 playing cards. The probability that it is not a face card is
(a) $\frac{12}{52}$
(b) $\frac{16}{52}$
(c) $\frac{10}{13}$
(d) $\frac{9}{13}$

Solution. Choice (c) is correct.
Number of the face cards in a well-shuffled deck of 52 playing cards

$$
=4 \text { Kings }+4 \text { Queces }+4 \text { Jacks }
$$

Number of not face cards in a well-shuffled deck of 52 playing cards

$$
\begin{aligned}
& =52-12 \\
& =40 \mathrm{~K}
\end{aligned}
$$

\therefore Probability that it is not a face card

$$
\frac{40}{52}=\frac{10}{13}
$$

Section B

Question numbers 11 to 18 carry 2 marks each.
11. How many natural numbers are there between 200 and 500 , which are divisible by 7 ?

Solution. The first term between 200 and 500 , which is divisible by 7 , is 203 and the second term is 210 .

> Clearly, first tern $=a=203$
> Second term $=a+d=210$
and common difference $(d)=210-203=7$
Last lerm which is divisible by 7 is 497
Let the mth term be 497, then

$$
\begin{aligned}
& a_{n}=a+(n-N) d \\
& \Rightarrow \quad, \quad 497=202+(n-1)=7 \\
& \Rightarrow \quad 497-203=(11-147 \\
& \Rightarrow \quad 294=(n-1) 7 \\
& \Rightarrow \quad n-1=42 \\
& \Rightarrow \quad h=43
\end{aligned}
$$

Hence, 43 haturan yumbers are divisible by 7 between 200 and 500 .
18. In figure, $A B C$ is a triangle right-angled at B, with $A B=14 \mathrm{~cm}$ and $B C=24 \mathrm{~cm}$. With the vertices A, B and C as centres, arcs are drawn, each of radius 7 cm . Find the area of the shaded region.

$$
\left[\operatorname{Use} \pi=\frac{22}{7}\right]
$$

Solution. $A B C$ is a triangle right-angled at B. with $A B=14 \mathrm{~cm}$ and $B C=24 \mathrm{~cm}$.
Let A_{1} be the area of a right triangle $A B C$, then

Required area of the shaded region

$$
\begin{aligned}
& - \text { Area of a right triangle } A B C \text { - Area of a sectot at } A
\end{aligned}
$$

$$
\left.=168-\frac{A}{360^{\circ}} \times \pi \times(7)^{2}-\frac{B}{360^{\circ}} \times \pi \times(7)\right)^{2}-\frac{C}{360^{\circ}} \times \pi \times(7)^{2}
$$

$$
=\left[168-\frac{\pi \times 49}{360^{\circ}} \times(A+B+C) \mathrm{cm}^{2}\right.
$$

$$
=\left[168-49 \pi \times \frac{180^{\circ}}{360^{\circ}}\right] \mathrm{cm}^{2}
$$

$$
\left[-A+B+C=180^{\circ}\right]
$$

$$
\left.=\left[168-49 \pi \times \frac{\mathrm{x}}{2}\right] \mathrm{cm}^{2}\right)
$$

$$
\left[168,-49 \times \frac{22}{7} \times \frac{1}{2}\right] \mathrm{cm}^{2}
$$

$$
=[160-7 \times 11] \mathrm{cm}^{2}
$$

$$
=[168-77] \mathrm{cm}^{2}
$$

$$
\text { < } 91 \mathrm{~cm} 2
$$

Section C•

Questom numbers 19 to 28 carry 3 marks each.
19. The point $A(3, y)$ is equidistant from the points $P(6,5)$ and $Q(0,-3)$. Find the value of y. Solution. It is given that the poini $A(3, y)$ is equidistant from the points $P(6,5)$ and $Q(0,-3)$

$$
A P=A Q \text { (given) }
$$

$$
\begin{aligned}
& A_{1}=\frac{1}{2} \times \text { Base } \times \mathrm{Height} \\
& \Rightarrow A_{1}=\frac{1}{2} \times 24 \times 14 \mathrm{~cm}^{2} \\
& \Rightarrow \quad A_{1}=168 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad(6-3)^{2}+(5-y)^{2}-(0-3)^{2}+(-3-y)^{2} \\
& \Rightarrow 9+25-10 y+y^{2}=9+9+y^{2}+6 y \\
& \Rightarrow 6 y+10 y-9+25-9-9 \\
& \Rightarrow \quad 9 \quad 16 y-16
\end{aligned}
$$

Hence, the value of y is 1 .
20. Area of a sector of a circle of radius 14 cm is $154 \mathrm{~cm}^{2}$. Find the length of the corresponding are of the sector.

Solution. Radius of a circle $(r)=14 \mathrm{~cm}$
Area of a sector of a circle of radius $(r)=154 \mathrm{~cm}^{2}$

$$
\quad A=\frac{\theta}{360^{\circ}} \times \pi(14)^{2} \mathrm{~cm}^{2}
$$

$$
\left[\operatorname{Hse} \pi=\frac{22}{7}\right]
$$

Also, the length of the corresponding are of a circle of radius $(r)=l=14 \mathrm{~cm}$

$$
\begin{equation*}
\therefore \quad \quad \quad l=\frac{\theta}{360^{\circ}} \times 2 \pi(14) \tag{2}
\end{equation*}
$$

Dividing (1) by (2), we get

$$
\begin{aligned}
& \Rightarrow \quad-\quad \frac{A}{A}-\frac{\theta}{360^{\circ}} \times \pi \times(14)^{2} \\
& \Rightarrow \quad \frac{154}{1}-\frac{(14)^{2}}{2 \times 14} \\
& \Rightarrow \quad \text { Q } \quad l=\frac{154 \times 2 \times 14}{14 \times 14} \\
& \Rightarrow \quad l=11 \times 2=22 \mathrm{~cm}
\end{aligned}
$$

Hence the length of the corresponding arc of the sector is 22 cm .
Alternative method :
Radius of a circle $(r)=14 \mathrm{~cm}$
Area of a sector of a circle of radius (r) $=14 \mathrm{~cm}$ is $154 \mathrm{~cm}^{2}$ (given)
$\therefore \quad A=15 \mathrm{~cm}^{2}$
Area of a sector in terms of tength, i.e.

Section D

Question mumbers 29 to 34 carry 4 marks each.
29. The angle of elevation of the top of a buidding from the foot of a tower is 30° and the angle of elevation of the top of the tover from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

Solution. Let $A B=h$ metres be the height of the building and $C D=50 \mathrm{~m}$ be the height of the tower.

It is given that the angle of elevation of the top of a building from the foot of a tower is 30°.

$$
\therefore \quad \angle A D B=30^{\circ}
$$

Also it is given that the angle of elevation of the top of the tower from the foot of the building is 60°.

$$
\therefore \quad \angle D B C=60^{\circ}
$$

In right triangle $C D B$, we have

$$
\begin{aligned}
& \quad \tan 60^{\circ}=\frac{C D}{D B} \\
& \Rightarrow \quad \sqrt{3}=\frac{C D}{D B} \\
& \Rightarrow \quad D B=\frac{50}{\sqrt{3}}
\end{aligned}
$$

Again, in right triangle $A B D$, we have

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{A B}{D B} \\
& \Rightarrow \stackrel{\mathrm{I}}{\sqrt{3}}=\frac{h}{D B} \\
& \Rightarrow \quad D B=\sqrt{3} h
\end{aligned}
$$

From (1) and (2), we get

$$
\begin{aligned}
& \frac{50}{\sqrt{3}}=\sqrt{3} h \\
& \Rightarrow \quad 3 h=50 \\
& \Rightarrow \quad . \quad \text {. } h=16.67 \text { metres }
\end{aligned}
$$

Hence, the height of hhe building is 16.67 metres.
30. Water is flowing at the rate of $10 \mathrm{~km} / \mathrm{hour}$ through a pipe of diameter 16 cm into a cuboidal tank of didensions $22 \mathrm{~m} \times 20 \mathrm{~m} \times 16 \mathrm{~m}$. How long will it take to till the empty tank?

$\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$
Solution, Let the cuboidal tank be filled in x hours.
Since water is flowing at the rate $10 \mathrm{~km} /$ /hour, therefore. the length of water flows through the pipe in x hours

$$
\begin{aligned}
& =10 x \mathrm{~km} \\
& \mathrm{I} 0000 \times \text { metres }-(h) \text { height of pipe }
\end{aligned}
$$

[^0]\therefore Internal radius of a pipe $-\frac{16}{2}=8 \mathrm{~cm}=\frac{8}{100}$ metres
\therefore Volume of water flows from the cylindrical pipe in x hours
\[

$$
\begin{aligned}
& =\pi r^{2} h \\
& =\left(\frac{22}{7} \times \frac{8}{100} \times \frac{8}{100} \times 10000 x\right) \mathrm{m}^{3} \\
& =\frac{22 \times 8 \times 8 x}{7} \mathrm{~m}^{3}
\end{aligned}
$$
\]

Since cuboidal tank of dimensions $22 \mathrm{~m} \times 20 \mathrm{~m} \times 16 \mathrm{~m}$ is filled in x hours, therefore 1 tes Volume of the water flows in the cuboidal tank in x hours $=$ Volume of the pipe

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \text { Hence, it will take } 35 \text { hours to fill the enpty tank. } \\
& 22 \times 20 \times 16=\pi r^{2} h \\
& x=35 \text { hours }
\end{aligned}
$$

31. Find the area of the shaded region in figure, where $A B C D$ is a square of side 28 cm .

Solution. Side of a square $=28 \mathrm{~cm}$
\therefore Area of a square $A B C D=(\text { Side })^{2}=(28)^{2}=784 \mathrm{~cm}^{2}$
Diameter of each circle $=\frac{\text { Side of a square }}{2}=\frac{28}{2}=14 \mathrm{~cm}$
\Rightarrow Radius (r) of each circle $=\frac{14}{2}=7 \mathrm{~cm}$
\therefore Area of one circle $\leq \pi r^{2}$

$$
2{ }^{2}-\frac{22}{7} \times(7)^{2} \mathrm{~cm}^{2}
$$

$$
\text { 1- }-(22 \times 7) \mathrm{cm}^{2}=154 \mathrm{~cm}^{2}
$$

Thus, aren of the four circles $=4$ times the area of one circle

$$
\begin{aligned}
& =4 \times 154 \mathrm{~cm}^{2} \\
& =616 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, area of the shaded region

$$
\begin{aligned}
& =\text { Area of a square }- \text { Area of the four cireles } \\
& =784 \mathrm{~cm}^{2}-616 \mathrm{~cm}^{2} \\
& =168 \mathrm{~cm}^{2}
\end{aligned}
$$

[^0]: Anernal diameter of a pipe $=16 \mathrm{~cm}$

