CCE SAMPLE QUESTION PAPER

FIRST TERM (SA-I)
 MATHEMATICS
 (With Solutions)
 CLASS X

General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each, Section C comprises of 10 questions of $及$ marks each and Section D comprises of 6 questions of 4 marks each.
(iii) Question numbers 1 to 10 in Section'A are multiple inoice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all suchquestions.
(v) Use of calculators is not permitted.

Section A

Question numbers 1 to 10 are of one mark each.

1. If $\tan \theta=\frac{1}{\sqrt{7}}$, then the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$ is
(a) $\frac{1}{2}$
(b) $\frac{3}{4}$
(c) $\frac{4}{5}$
(d) $\frac{2}{\sqrt{7}}$

Solution. Choice (b) is correct.

$$
\begin{aligned}
& \sec ^{2} \theta=1+\tan ^{2} \theta=1+\frac{1}{7}=\frac{8}{7} \\
& \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta=1+\frac{1}{\tan ^{2} \theta}=1+7=8
\end{aligned}
$$

$\cdots \quad \frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{8-\frac{8}{7}}{8+\frac{8}{7}}$

$$
=\frac{(56-8) / 7}{(56+8) / 7}
$$

$$
\begin{aligned}
& =\frac{48}{64} \\
& =\frac{3}{4}
\end{aligned}
$$

2. If $\sin \alpha=\frac{1}{2}$, then the value of $4 \cos ^{3} \alpha-3 \cos \alpha$ is
(a) 0
(b) 1
(c) -1
(d) $\frac{1}{8}$

Solution. Choice (a) is correct.

$$
\begin{gathered}
\quad \sin \alpha=\frac{1}{2} \\
\Rightarrow \quad \sin ^{2} \alpha=\frac{1}{4} \\
\Rightarrow \quad 1-\sin ^{2} \alpha=1-\frac{1}{4} \\
\Rightarrow \quad \cos ^{2} \alpha=\frac{3}{4} \\
\Rightarrow \quad \\
\Rightarrow \quad \cos \alpha=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Now, $4 \cos ^{3} \alpha-3 \cos \alpha$

$$
\begin{aligned}
& =4\left(\frac{\sqrt{3}}{2}\right)^{3}-3\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{4(3 \sqrt{3})}{8}-\frac{3 \sqrt{3}}{2} \\
& =\frac{3 \sqrt{3}}{2}-\frac{3 \sqrt{3}}{2} \\
& =0
\end{aligned}
$$

3. If $\cos 2 \theta=\sin \left(\theta-12^{\circ}\right)$, where (20) and $\left(\theta-12^{\circ}\right)$ are both acute angles, then the value of θ is
(a) 24°
(b) 28°
(c) 32°
(d) 34°

Solution. Choice (d) is correct.

$$
\begin{array}{rlrl}
\cos 2 \theta & =\sin \left(\theta-12^{\circ}\right) \\
\Rightarrow \sin \left(90^{\circ}-2 \theta\right) & =\sin \left(\theta-12^{\circ}\right) \\
\Rightarrow 90^{\circ}-2 \theta & =\theta-12^{\circ} \\
\Rightarrow & 2 \theta+\theta & =90^{\circ}+12^{\circ} \\
\Rightarrow & 3 \theta & =102^{\circ} \\
\Rightarrow & \theta & =102^{\circ} \div 3 \\
\Rightarrow & \theta & =\mathbf{3 4}
\end{array}
$$

4. In figure, $A D=3 \sqrt{3} \mathrm{~cm}, B D=3 \mathrm{~cm}$ and $C B=8 \mathrm{~cm}$, then the value of cosec θ is

(a) $\frac{2}{3}$
(b) $\frac{4}{3}$
(c) $\frac{5}{3}$
(d) $\frac{7}{3}$

Solution. Choice (c) is correct.
In right $\triangle A D B, A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow \quad A B^{2}=(3 \sqrt{3})^{2}+(3)^{2}$
$\Rightarrow \quad A B^{2}=27+9=36=(6)^{2}$
$\Rightarrow \quad A B=6 \mathrm{~cm}$
In right $\triangle A B C, A C^{2}=C B^{2}+A B^{2}$
$\Rightarrow \quad A C^{2} \equiv(8)^{2}+(6)^{2}$
$\Rightarrow \quad A C^{2}=64+36=100=(10)^{2}$
$\Rightarrow \quad A C=10 \mathrm{~cm}$
In $\triangle A C B, \operatorname{cosec} \theta=\frac{A C}{A B}=\frac{10}{6}=\frac{5}{\mathbf{3}}$.
5. For a given data with 100 observations the less than ogive and the more than ogive' intersect at (525,50). The median of the data is
(a) 20
(b) 30
(c) 50
(d) 525

Solution. Choice (d) is correct.
The x-coordinate of the intersection point (525,50) of 'less than ogive and more than ogive' is 525 . Therefore, $\mathbf{5 2 5}$ is the median of the given data.
6. Which of the following is not a rational number?
(a) $\sqrt{3}$
(b) $\sqrt{9}$
(c) $\sqrt{16}$
(d) $\sqrt{25}$

Solution. Choice (a) is correct.
Since 3 is a prime number, $\sqrt{3}$ is an irrational number.
7. The FCR of two numbers is 145 and their LCM is 2175 . If one number is $\mathbf{7 2 5}$, then the other number is
(a) 415
(b) 425
(c) 435
(d) 445

Solution Choice (c) is correct.
LCM \times HCF $=$ Product of two numbers a and b :
$\Rightarrow \quad 145 \times 2175=725 \times b$, where $a=725$

$$
\begin{array}{ll}
\Rightarrow & \dot{b}=\frac{145 \times 2175}{725} \\
\Rightarrow & b=145 \times 3 \\
\Rightarrow & b=435
\end{array}
$$

8. In figure, the graph of a polynomial $p(x)$ is shown. The number of zeroes of $p(x)$ is

(a) 1
(b) 2
(c) 3
(d) 4

Solution. Choice (c) is correct.
The number of zeroes of $p(x)$ is $\mathbf{3}$ as the graph intersects the x-asis at three points A, B and C in figure.
9. In $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$. If $\frac{A D}{D B}=\frac{2}{3}$ and $A C=18 \mathrm{~cm}$, then $A E$ is equal to
(a) 5.2 cm

(c) 7.2 cm

Solution. Choice (c) is correct.
In figure, since $D E \| B C$, then by BPT, we have

$$
\begin{aligned}
& \text { - } \frac{A D}{D B}=\frac{A E}{E C} \\
& \Rightarrow \quad \frac{2}{3}=\frac{A E}{A C-A E} \\
& \frac{2}{3}=\frac{A E}{18-A E} \\
& \begin{array}{ll}
\Rightarrow & 36-2 A E=3 A E \\
\Rightarrow & 3 A E+2 A E=36
\end{array} \\
& \Rightarrow \int \begin{aligned}
5 A E & =36
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & A E=36 \div 5 \\
\Rightarrow & A E=7.2 \mathrm{~cm}
\end{array}
$$

10. If the pair of linear equations $2 x+3 y=7$ and $2 \alpha x+(\alpha+\beta) y=28$ has infinitely many solutions, then the values of α and β are
(a) 3 and 5
(b) 4 and 5
(c) 4 and 7
(d) 4 and 8

Solution. Choice (d) is correct.
The given pair of linear equations will have infinitely many solution, if

$$
\begin{aligned}
& & \frac{2}{2 \alpha} & =\frac{3}{\alpha+\beta}=\frac{-7}{-28} \\
\Rightarrow & & \frac{1}{\alpha} & =\frac{3}{\alpha+\beta}=\frac{1}{4} \\
\Rightarrow & & \alpha=4 \text { and } & \alpha+\beta=12 \\
\Rightarrow & & \alpha=4 \text { and } & \beta=8
\end{aligned}
$$

Section B
Question numbers 11 to 18 carry 2 marks each.
11. Find the LCM and HCF of 510 and 92 by the prime factorisation method.

Solution. The prime factorisation of 510 and 92 gives :

$$
510=2^{1} \times 3^{1} \times 5^{1} \times 17^{1} \text { and } 92=2 \times 2 \times 23=2^{2} \times 23^{1}
$$

Here, 2^{1} is the smallest power of the common factor 2 .
So, HCF $(510,92)=2^{1}=2=$ Product of the smallest power of each common prime factor $\operatorname{LCM}(510,92)=2^{2} \times 3^{1} \times 5^{1} \times 17^{1} \times 23^{1}=23460$
$=$ Product of the greatest power of each prime factor, involved in the numbers.
12. If the product of zeroes of the polynomial $a x^{2}-6 x-6$ is 4 , find the value of ' a '.

Solution. The zeroes of the quadratic polynomial $a x^{2}+b x+c$ and the roots of the quadratic equation $a x^{2}+b x+c=0$ are the same.

Let α and β be the zeroes of the polynomial $a x^{2}-6 x-6$.
Then, product of the zerees $=\alpha \beta=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}=\frac{-6}{a}$.
But the product of zeroes of the polynomial $a x^{2}-6 x-6$ is 4 .
\therefore
\Rightarrow
\Rightarrow
Thus, the value of a is $-\frac{3}{2}$.
13. 2 taibles and 3 chairs together cost ₹ 3500 whereas 3 tables and 2 chairs together cost $₹ \mathbf{4 0 0 0}$. Find the cost of a table and a chair.

Solution. Let the cost of a table be ₹ x and the cost of a chair be $₹ y$;
Then, according to the given condition, we have

$$
\begin{align*}
& 2 x+3 y=3500 \tag{1}\\
& 3 x+2 y=4000 \tag{2}
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{aligned}
& 5 x+5 y & =7500 \\
\Rightarrow & x+y & =1500
\end{aligned}
$$

Subtracting (1) from (2), we get

$$
x-y=500
$$

Adding (3) and (4), we get'

$$
2 x=2000
$$

$$
\Rightarrow \quad x=1000
$$

Substituting $x=1000$ in (3), we get

$$
\begin{aligned}
& & 1000+y & =1500 \\
\Rightarrow & & y & =1500-1000 \\
\Rightarrow & & y & =500
\end{aligned}
$$

Hence, the cost of a table $=₹ 1000$ and the cost of a chair $=$ रे 500 .
14. In figure, $\triangle A B D$ is a right triangle, right-angled at A and $A C \perp B D$. Prove that $A B^{2}=B C \cdot B D$.

Solution. Given : $\triangle A B D$ is a right triangle, right-angled at A and $A C \perp \dot{B} \dot{D}$.
To prove : $A B^{2}=B C . B D$.
Proof: In $\triangle A B D$ and $\triangle C A B$, we have

$$
\begin{gathered}
\angle B A D=\angle A C B \\
\angle B=\angle B
\end{gathered}
$$

So, by AA-criterion of (similarity of triangles, we have

$$
\begin{aligned}
& \triangle A B D \sim \triangle C A B \\
\Rightarrow \quad & \frac{A B}{B D}=\frac{B C}{A B}
\end{aligned}
$$

15. Find the value of $\tan 60^{\circ}$, geometrically.

Solution. Consider an equilateral triangle $A B C$. Let $2 a$ be the length of each side of the traingle $A B C$ such that

$$
A B=B C=C A=2 a
$$

Sifice each angle in an equilateral triangle is 60°, therefore,

$$
\angle A=\angle B=\angle C=60^{\circ}
$$

Draw the perpendicular $A D$ from A to the side $B C$.
Clieariy, $\triangle A B D \cong \triangle A C D$
Therefore,
anब $\quad \angle B A D=\angle C A D\}$
[CPCT]

$\triangle A B D$ is a right triangle, right angled at D with $\angle A B D=60^{\circ}$
Also,

$$
B D=\frac{1}{2} B C=\alpha
$$

In $\triangle A B D$, we have

$$
A D^{2}=A B^{2}-B D^{2}=(2 a)^{2}-(a)^{2}=3 a^{2} \Rightarrow A D=\sqrt{3} a
$$

Now, $\tan 60^{\circ}=\frac{A D}{B D}=\frac{\sqrt{3} a}{a}=\sqrt{3}$.
Or
Without using the trigonometric tables, evaluate the following:

$$
\frac{11}{7} \cdot \frac{\sin 70^{\circ}}{\cos 20^{\circ}}-\frac{4}{7} \cdot \frac{\cos 53^{\circ} \operatorname{cosec} 37^{\circ}}{\tan 15^{\circ} \tan 35^{\circ} \tan 55^{\circ} \tan 75^{\circ}}
$$

Solution. We have

$$
\begin{aligned}
& \frac{11}{7} \cdot \frac{\sin 70^{\circ}}{\cos 20^{\circ}}-\frac{4}{7} \cdot \frac{\cos 53^{\circ} \operatorname{cosec} 37^{\circ} \cdot}{\tan 15^{\circ} \tan 35^{\circ} \tan 55^{\circ} \tan 75^{\circ}} \\
& \quad=\frac{11}{7} \cdot \frac{\sin \left(90^{\circ}-20^{\circ}\right)}{\cos 20^{\circ}}-\frac{4}{7} \cdot \frac{\cos \left(90^{\circ}-379 \cdot \operatorname{cosec} 37^{\circ}\right.}{\tan 15^{\circ} \tan 35^{\circ} \cdot \tan \left(90^{\circ}-35^{\circ}\right) \cdot \tan \left(90^{\circ}-15^{\circ}\right)} \\
& \quad=\frac{11}{7} \cdot \frac{\cos 20^{\circ}}{\cos 20^{\circ}}-\frac{4}{7} \cdot \frac{\sin 37^{\circ} \cdot \operatorname{cosec} 37^{\circ}}{\tan 15^{\circ} \tan 35^{\circ} \cdot \cot 35^{\circ} \cdot \cot 15^{\circ}} \\
& \quad=\frac{11}{7} \cdot(1)-\frac{4}{7} \cdot \frac{\left.\sin \left(90^{\circ}-\theta\right)=\cos \theta \cdot \cos \left(90^{\circ}-\theta\right)=\sin \theta, \tan \left(90^{\circ}-\theta\right)=\cot \theta\right]}{\left(\sin 37^{\circ} \cdot \operatorname{cosec} 37^{\circ}\right)} \\
& \quad=\frac{11}{7}-\frac{4}{7} \cdot \frac{1}{(1)(1)} \quad[\because \sin \theta \cdot \operatorname{cosec} \theta=1, \tan \theta \cdot \cot \theta=1] \\
& \quad=\frac{11}{7}-\frac{4}{7} . \\
& \quad=\frac{7}{7}=1 .
\end{aligned}
$$

16. In a $\triangle A B C, \angle B C A$ is a right angle. If Q is the mid point of the side $B C, A C=4$ cm , and $A Q=5 \mathrm{~cm}$, find $(A R)^{2}$.

Solution. Since $\triangle A C E$ is a right angle, right-angled at C, therefore

$$
A B^{2}=A C^{2}+B C^{2}
$$

$\Rightarrow \quad A B^{2}=A C^{2}+(2 Q C)^{2} \quad\left[\because Q\right.$ is the mid-point of $\left.B C, B Q=Q C=\frac{1}{2} B C\right]$
$\Rightarrow \quad A B^{2}=A C^{2}+4 Q C^{2}$
Again, $\triangle A C Q$ is right triangle, right-angled at C, therefore

$$
\begin{align*}
& \Rightarrow \quad \begin{aligned}
& Q C^{2}=A)^{2}-A C^{2} \\
&=(5)^{2}-(4)^{2}[\because A Q=5 \mathrm{~cm} \text { and } A C=4 \mathrm{~cm}] \\
& Q C^{2}=25-16=9
\end{aligned} \quad \ldots(2)
\end{align*}
$$

From (1) and (2), have

$$
\Rightarrow \quad \begin{array}{ll}
A B^{2}=(\pm)^{2}+4 \times 9 \\
A B^{2}=16+36=52 \\
(A B)^{2}=52 \mathbf{c m}^{2} \ldots
\end{array} \quad[\because A C=4 \mathrm{~cm}]
$$

17. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality.

Monthly consumption (in units)	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-205$
Number of consumers	4	5	13	20	14	8	4

Write the above distribution as less than type cumulative frequency distribution.
Solution. Cumulative Frequency Table as less than type is given below

Monthly consumption (in units)	Number of consumers [Frequency (f)	Monthly consūmption less than	Cumpulative frequency
$65-85$	4	85	(cf)
$85-105$	5	105	4
$105-125$	13	125	$9(5+4)$
$125-145$	20	145	$22(13+9)$
$145-165$	14	185	$42(22+20)$
$165-185$	8	$56(42+14)$	
$185-205$	4	205	$64(56+8)$

18. The length of 42 leaves of a plant are measared correct up to the nearest millimetre and the data is as under :

Length (in mm)	$118-126$	$126-134$	$134-142$	$142-150$	$150-158$	$158-166$
Number of leaves	4	5	10	14	4	5

Find the mode length of the reaves.
Solution. Since the maximum number/ of leaves is 14 , therefore, the modal class is' 142-150.
$\therefore \quad l=142, h=8, f_{1}=14, f_{0}=10, f_{2}=4$
Using the formula :

$$
\begin{aligned}
\text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& =142+\frac{14-10}{2 \times 14-10-4} \times 8 \\
& =142+\frac{4}{28-14} \times 8 \\
& =142+\frac{4}{14} \times 8 \\
& =142+\frac{16}{7} \\
& =142+2.29 \\
& =144.29 \mathrm{~mm}
\end{aligned}
$$

Section C

Question numbers 19 to 28 carry 3 marks each.
19. Prove that $3+\sqrt{2}$ is an irrational number.

Solution. Let us assume to contrary, that $3+\sqrt{2}$ is rational.
That is, we can find coprime a and $b(b \neq 0)$ such that

$$
3+\sqrt{2}=\frac{a}{b}
$$

Rearranging, we get

$$
\begin{aligned}
& \sqrt{2} \\
= & \frac{a}{b}-3 \\
\Rightarrow \quad & \sqrt{2}
\end{aligned}=\frac{a-3 b}{b}
$$

Since a and b are integers, we get $\frac{a-3 b}{b}$ is rational, and so $\sqrt{2}$ is ratienal.
But this contradicts the fact that $\sqrt{2}$ is irrational.
This contradiction has arisen because of our incorrect/assumption shat $3+\sqrt{2}$ is rational.
So, we conclude that $3+\sqrt{2}$ is irrational.
Or

Prove that $5 \sqrt{2}$.is irrational number.

Solution. Let us assume to the contrary © H at $5 \sqrt{2}$ is) rational.
Then, there exist co-prime positive integers p and q such that

$$
\begin{array}{rlrl}
& & 5 \sqrt{2} & =\frac{p}{q} \\
\Rightarrow & \sqrt{2} & =\frac{p}{5 q}
\end{array}
$$

$$
\Rightarrow \quad \sqrt{2} \text { is rationa }
$$

$$
\left[\begin{array}{l}
\because 5, p \text { and } q \text { are integers. } \\
\therefore \frac{p}{5 q} \text { is a rational number }
\end{array}\right]
$$

But this contradicts the fact that $\sqrt{2}$ is irrational. This contradiction has arisen because of our incorrect assumption that $5 \sqrt{2}$ is rational.
So, we conclude that $5 \sqrt{2}$ is irrational.

20. For any positive integer $n, n^{3}-n$ is divisible by 6 .

Solution. We know that any positive integer is of the form $6 m, 6 m+1,6 m+2,6 m+3$, $6 m+4,6 m+5$, for some positive integer n.

When $n=6 m$, then

$$
n^{3}-n=(6 m)^{3}-(6 m)
$$

$$
\begin{aligned}
& =216 m^{3}-6 m \\
& =6 m\left(36 m^{2}-1\right) \\
& =6 p, \text { where } p=m\left(36 m^{2}-1\right)
\end{aligned}
$$

$\Rightarrow n^{3}-n$ is divisible by 6 .
When $n=6 m+1$, then

$$
\begin{aligned}
& n^{3}-n=(n-1) n(n+1) \\
&=(n-1)\left(n^{2}+n\right) \\
&=(6 m+1-1)\left[(6 m+1)^{2}+6 m+1\right] \\
&=6 m\left[36 m^{2}+12 m+1+6 m+1\right] \\
&=6 m\left(36 m^{2}+18 m+2\right) \\
&=6 q, \text { where } q=m\left(36 m^{2}+18 m+2\right) \\
& \Rightarrow n^{3}-n \text { is divisible by } 6 .
\end{aligned}
$$

When $\boldsymbol{n}=6 \boldsymbol{m}+2$, then

$$
\begin{aligned}
n^{3}-n & =(n-1)(n)(n+1) \\
& =(6 m+2-1)(6 m+2)(6 m+2+1) \\
& =(6 m+1)(6 m+2)(6 m+3) \\
& =(6 m+1)\left[36 m^{2}+30 m+6\right] \\
& =6 m\left(36 m^{2}+30 m+6\right)+36 m^{2}+30 m+6 \\
& =6 m\left(36 m^{2}+30 m+6\right)+6\left(6 m^{2}+5 m+1\right) \\
& =6 p+6 q, \text { where } p=m\left(36 m^{2}+30 m+6\right) \text { and } q=6 m^{2}+5 m+1 \\
& =6(p+q)
\end{aligned}
$$

$\Rightarrow n^{3}-n$ is divisible by 6 .
When $n=6 m+3$, then

$$
\begin{aligned}
n^{3}-n & =(6 m+3)^{3}-(6 m+3) \\
& =(6 m+3)\left[(6 m+3)^{2}\right) \\
& =6 m\left[(6 m+3)^{2}-1\right]+3\left[(6 m+3)^{2}-1\right] \\
& =6 m\left[(6 m+3)^{2}-1\right]+3\left[36 m^{2}+36 m+9-1\right] \\
& =6 m\left[(6 m+3)^{2}-1\right]+3\left[36 m m^{2}+36 m+8\right] \\
& =6 m\left[(6 m+3)^{2}-1\right]+6\left(18 m^{2}+18 m+4\right) \\
& =6 p+6 q, \text { where } p=m\left[(6 m+3)^{2}-1\right] \text { and } q=18 m^{2}+18 m+4
\end{aligned}
$$

$\Rightarrow n^{3}-n$ is divisible by 6 .

When $n=6 m+4$, then

$$
\begin{aligned}
n^{3}-n & =(6 n+4)-(6 m+4) \\
& =6 m+4)\left[(6 m+4)^{2}-1\right] \\
& =6 m\left[(6 m+4)^{2}-1\right]+4\left[(6 m+4)^{2}-1\right] \\
& =6 m\left[(6 m+4)^{2}-1\right]+4\left[\left(36 m^{2}+48 m+16-1\right]\right. \\
& =6 m\left[(6 m+4)^{2}-1\right]+12\left[12 m^{2}+16 m+5\right] \\
& =6 p+6 q, \text { where } p=m\left[(6 m+4)^{2}-1\right] \text { and } q=2\left(12 m^{2}+16 m+5\right) \\
& =6(p+q)
\end{aligned}
$$

$\Rightarrow n^{3}-n$ is divisible by 6 .

When $n=6 m+5$, then

$n^{3}-n$	$=(6 m+5)^{3}-(6 m+5)$
	$=(6 m+5)\left[(6 m+5)^{2}-1\right]$
	$=6 m\left[(6 m+5)^{2}-1\right]+5\left[(6 m+5)^{2}-1\right]$
	$=6 m\left[(6 m+5)^{2}-1\right]+5\left[\left(36 m^{2}+60 m+25-1\right]\right.$
	$=6 m\left[(6 m+5)^{2}-1\right]+30\left[6 m^{2}+10 m+4\right]$

$$
\begin{aligned}
& =6 p+30 q, \text { where } p=m\left[(6 m+5)^{2}-1\right] \text { and } q=6 m^{2}+10 m+4 \\
& =6(p+5 q)
\end{aligned}
$$

$\Rightarrow n^{3}-n$ is divisible by 6 .
Hence, $n^{3}-n$ is divisible by 6 for any positive integer n.
21. Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour, What are the speeds of the two cars?

Solution. Let X and Y be the two cars starting from places A and B respectively. Let $x \mathrm{~km} / \mathrm{h}$ and $y \mathrm{~km} / \mathrm{h}$ be the speeds of the cars X and Y respectively.

Case 1 : When two cars move in the same direction :

Suppose two cars meet at a point P, then
Distance travelled by the car X in 5 hours is $A P$

$$
\begin{align*}
& =\text { speed } \times \text { time } \\
& =(x \mathrm{~km} / \mathrm{h}) \times(5 \mathrm{~h}) \\
& =5 x \mathrm{~km} \tag{1}
\end{align*}
$$

Distance travelled by the car Y in 5 hours is $B P$

$$
\begin{aligned}
& =(y \mathrm{~km} / \mathrm{h}) \times(5 \mathrm{~h}) \\
& =5 y \mathrm{~km}
\end{aligned}
$$

Distance between the two places A and $B(=A \mathcal{B})$

$$
=\text { Distance travelled by the Car } X \text { - Distance travelled by the car } Y
$$

$\begin{array}{lll}\Rightarrow & & A B=A P-B P \\ \Rightarrow & & 100 \\ \Rightarrow & =5 x-5 y \\ \Rightarrow & x-y=20\end{array}$ [using (1), (2) and $A B=100 \mathrm{~km}$]
...(3) [Dividing both sides by 5]
Case 2 : When two cars move in the opposite directions (towards each other) :

Suppose two cars meet at a point Q, then
Distance travelled by the car Xin 1 hour is $A Q$

$$
\begin{align*}
& =(x \mathrm{~km} / \mathrm{h}) \times(1 \mathrm{~h}) \\
& =x \mathrm{~km} \tag{4}
\end{align*}
$$

Distance travelled by the car Y in 1 hour is $B Q$

$$
\begin{align*}
& =(9 \mathrm{~km} / \mathrm{h}) \times(1 \mathrm{~h}) \\
& =y \mathrm{~km} \tag{5}
\end{align*}
$$

Distance between two places A and $B(=A B)$
$=$ Distance travelled by the car $X+$ Distance travelled by the car Y
$\Rightarrow \quad A B=A Q+B Q$
$\Rightarrow \quad 100=x+y$
...(6) [using (4), (5) and $A B=100 \mathrm{~km}$]
Adding and subtracting (3) and (6), we get
$\Rightarrow \quad \begin{aligned} 2 x & =120 \text { and } 2 y=80 \\ x & =60 \text { and } y=40\end{aligned}$
Hence, the speed of the two cars are $\mathbf{6 0} \mathrm{km} / \mathrm{h}$ and $\mathbf{4 0} \mathbf{~ k m} / \mathrm{h}$ respectively.

Or

Solve the following pair of equations :

$$
\begin{aligned}
& \frac{10}{x+y}+\frac{2}{x-y}=4 \\
& \frac{10}{x+y}+\frac{2}{x-y}=-2
\end{aligned}
$$

Solution. We have:

$$
\frac{10}{x+y}+\frac{2}{x-y}=4
$$

and

$$
\frac{15}{x+y}-\frac{5}{x-y}=-2
$$

Multiplying (1) by 5 and (2) by 2 , we get

$$
\frac{50}{x+y}+\frac{10}{x-y}=20
$$

and

$$
\frac{30}{x+y}-\frac{10}{x-y}=-4
$$

Adding (1a) and (2a), we get

$$
\begin{align*}
& \left(\frac{50}{x+y}+\frac{10}{x-y}\right)+\left(\frac{30}{x+y}-\frac{10}{x-y}\right)=20-4 \\
& \Rightarrow \quad \frac{80}{x+y}=16 \\
& \Rightarrow \quad \text {. } \quad x+y=80 \div 16 \\
& \Rightarrow \quad x+y=5 \tag{3}
\end{align*}
$$

Substituting $x+y=5$ in (1), we obtain

$\Rightarrow \quad$| | |
| :--- | :--- |
| \Rightarrow | $\frac{10}{5}+\frac{2}{x-y}=4$ |
| \Rightarrow | $\frac{2}{x-y}=4-2$ |
| $x-y=1$ | |

Now, adding (3) and (4), we get : $2 x=6 \Rightarrow x=3$
Subtracting (4) from (3), we get : $2 y=4 \Rightarrow y=2$
Hence, $x-3, y=2$ is the required solution of the given pair of equations.
22. Find all the zeroes of the polynomial $2 x^{3}+x^{2}-6 x-3$, if two of its zeroes are $-\sqrt{3}$ @nd $\sqrt{3}$.

Solution. Since two zeroes are $-\sqrt{3}$ and $\sqrt{3}$, therefore $(x+\sqrt{3})(x-\sqrt{3})=x^{2}-3$ is a factor of the given polynomial.

Now, we divide the given polynomial by $x^{2}-3$.

$$
\begin{array}{r}
x ^ { 2 } - 3 \longdiv { 2 x + 1 } \begin{array} { r }
{ \frac { 2 x ^ { 3 } + x ^ { 2 } - 6 x - 3 } { 2 x ^ { 3 } + 6 x } } \\
{ \frac { x ^ { 2 } \cdot - 3 } { x ^ { 2 } \quad - 3 } } \\
{ \frac { - \quad } { 0 } }
\end{array}
\end{array}
$$

$$
\begin{aligned}
\therefore 2 x^{3}+x^{2}-6 x-3 & =\left(x^{2}-3\right)(2 x+1) \\
& =(x+\sqrt{3})(x-\sqrt{3})(2 x+1)
\end{aligned}
$$

So, the zero of the polynomial $(2 x+1)$ is given by $x=\frac{-1}{2}$.
Hence, all zeroes of the given polynomial are $-\sqrt{3}, \sqrt{3}$ and

23. Prove that :

$$
\sec ^{4} \theta\left(1-\sin ^{4} \theta\right)-2 \tan ^{2} \theta=1
$$

Solution. We have
L.H.S. $=\sec ^{4} \theta\left(1-\sin ^{4} \theta\right)-2 \tan ^{2} \theta$

$$
\begin{aligned}
& =\sec ^{4} \theta-\sec ^{4} \theta \cdot \sin ^{4} \theta-2 \tan ^{2} \theta \\
& =\sec ^{4} \theta-\frac{\sin ^{4} \theta}{\cos ^{4} \theta}-2 \tan ^{2} \theta \\
& =\sec ^{4} \theta-\tan ^{4} \theta-2 \tan ^{2} \theta \\
& =\left(\sec ^{4} \theta-\tan ^{4} \theta\right)-2 \tan ^{2} \theta \\
& =\left[\left(\sec ^{2} \theta\right)^{2}-\left(\tan ^{2} \theta\right)\right]-2 \tan ^{2} \theta \\
& =\left(\sec ^{2} \theta-\tan ^{2} \theta\right)\left(\sec ^{2} \theta+\tan ^{2} \theta\right)-2 \tan ^{2} \theta \\
& =\left(1+\tan ^{2} \theta-\tan ^{2} \theta\right)\left(1+\tan ^{2} \theta+\tan ^{2} \theta\right)-2 \tan ^{2} \theta \\
& =(1)\left(1+2 \tan ^{2} \theta\right)-2 \tan ^{2} \theta \\
& =1+2 \tan ^{2} \theta-2 \tan ^{2} \theta \\
& =1 \\
& =\text { R.H.S. }
\end{aligned}
$$

24. If $\frac{\cos \alpha}{\cos \beta}=m$ and $\frac{\cos \alpha}{\sin \beta}-2$, show that $\left(m^{2}+n^{2}\right) \cos ^{2} \beta=n^{2}$.

Solution. We have
L.H.S $=\left(m^{2}+n^{2}\right) \cos ^{2} \beta$

$$
\begin{aligned}
& =\left(\frac{\cos ^{2} \alpha}{\cos ^{2} \beta}+\frac{\cos ^{2} \alpha}{\sin ^{2} \beta}\right) \cos ^{2} \beta \\
& = \\
& =\cos ^{2} \alpha\left(\frac{1}{\cos ^{2} \beta}+\frac{1}{\sin ^{2} \beta}\right) \cdot \cos ^{2} \beta \\
& =\cos ^{2} \alpha \cdot\left[\frac{\cos ^{2} \beta}{\cos ^{2} \beta}+\frac{\cos ^{2} \beta}{\sin ^{2} \beta}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\cos ^{2} \alpha\left[1+\cot ^{2} \beta\right] \\
& =\cos ^{2} \alpha \cdot \operatorname{cosec}^{2} \beta \\
& =\frac{\cos ^{2} \alpha}{\sin ^{2} \beta} \\
& =n^{2} \\
& =\text { R.H.S. }
\end{aligned}
$$

25. In figure, $\frac{X P}{P Y}=\frac{X Q}{Q Z}=3$, if the area of $\triangle X Y Z$ is $32 \mathrm{~cm}^{2}$, then find the area of the quadrilateral PYZQ.

Solution. We have

$$
\frac{X P}{P Y}=\frac{X Q}{Q Z}
$$

$$
\begin{array}{lc}
\therefore & P Q \| Y Z \\
\therefore & \angle X P Q=\angle X Y Z \\
& \angle X=\angle X
\end{array}
$$

[By converse of BPT] [Corresponding angles]
[Common]

By AA-criterion of similarity, we have

$$
\triangle X P Q \sim \triangle X Y Z
$$

$$
\Rightarrow \cdot \frac{\operatorname{ar}(\triangle X P Q)}{\operatorname{ar}(\Delta X Y Z)}=\frac{(X P)^{2}}{(X Y)^{2}}=\frac{(X Q)^{2}}{(X Z)^{2}}=\frac{(P Q)^{2}}{(Y Z)^{2}}
$$

$[\because$ The ratio of the areas of two simlar triangles is equal to the ratio of squares of their corresponding sides]

Now, $\quad \frac{X P}{P Y}=\frac{X Q}{Q Z}=\frac{3}{1}$ (given)
$\Rightarrow \quad \frac{P Y}{X P}=\frac{Q Z}{X Q}=\frac{1}{3}$
$\Rightarrow \quad \frac{P Y}{X P}+1=\frac{Q Z}{X Q}+1=\frac{1}{3}+1$.
$\Rightarrow \frac{P Y+X P}{X P}=\frac{Q Z+X Q}{X Q}=\frac{1+3}{3}$

$$
\frac{X Y}{X P}=\frac{X Z}{X Q}=\frac{4}{3}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{X P}{X Y}=\frac{X Q}{X Z}=\frac{3}{4} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\begin{aligned}
\quad \frac{\operatorname{ar}(\triangle X P Q)}{\operatorname{ar}(\triangle X Y Z)} & =\left(\frac{X P}{X Y}\right)^{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16} \\
\Rightarrow \quad \operatorname{ar}(\triangle X P Q) & =\frac{9}{16} \times \operatorname{ar}(\triangle X Y Z) \\
\Rightarrow \quad \operatorname{ar}(\triangle X P Q) & =\frac{9}{16} \times 32 \\
\Rightarrow \quad \operatorname{ar}(\triangle X P Q) & =18 \mathrm{~cm}^{2} \\
\Rightarrow \quad \operatorname{ar}(\text { quad } P Y Z Q) & =\operatorname{ar}(\triangle X Y Z)-\operatorname{ar}(\triangle X P Q) \\
& =(32-18) \mathrm{cm}^{2} \\
& =14 \mathrm{~cm}^{2}
\end{aligned}
$$

$\left[\because \operatorname{ar}(\triangle X Y Z)=32 \mathrm{em}^{2}\right.$ (given $\left.)\right]$

26. Find the length of an altitude of an equilateral triangle of side 2 cm .

Solution. Let $A B C$ be an equilateral triangle of side 2 cm in which $A D \perp B C$, i.e., $A D$ is the altitude of $\triangle A B C$.

In $\triangle A B D$ and $\triangle A C D$

$$
\begin{aligned}
& A B=A C \\
& A D=A D
\end{aligned}
$$

[Common]
and $\angle A D B=\angle A D C$
LEach $=90^{\circ}$
$\therefore \quad \triangle A B D \cong \triangle A C D$
[R.H.S. criterion of comgruence]
$\therefore \quad B D=D C$
$\Rightarrow \quad B D=D C=\frac{1}{2} B C=\frac{1}{2} A B$
$\ldots(1) \because A B=B C]$
In right $\triangle A B D$, we have

$$
A B^{2}=B D^{2}+A D^{2}
$$

$\Rightarrow \quad A D^{2}=A B^{2}-B D^{2}$
$\Rightarrow \quad A D^{2}=A B^{2}-\left(\frac{1}{2} A B\right)^{2}$.
$\Rightarrow \quad A D^{2}=A B^{2}=\frac{1}{4} A B^{2}$
$\Rightarrow \quad A D^{2}=\frac{3}{4} A B^{2}$
$\Rightarrow \quad A D^{2}=\frac{3}{4} \times(2)^{2} \quad[\because A B=2 \mathrm{~cm}$ (side of an equilateral Δ) $]$
$\Rightarrow \quad A D^{2}=3$
$\Rightarrow \quad A D=\sqrt{3} \mathrm{~cm}$

[using (1)]

Hence, the length of an altitude of an equilateral triangle of side 2 cm is $\sqrt{3} \mathbf{~ c m}$.
27. The table below gives the percentage distribution of female teachers in primary schools of rural areas of various states and union territories (U.T.) of India. Find the mean percentage of female teachers by using step-deviation method.

Percentage of female teachers	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$	$75-85$
No. of States/U.T.	6	11	7	4	4	2	1

Solution. Let the assumed mean $a=50$ and $h=10$
Calculation of Mean

Percentage of female teachers	No. of States/ $/$ U.T. $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-50}{18}$
$15-25$	6	20	-3
$25-35$	11	30	-2
$35-45$	7	40	-1
$45-55$	4	$50=a$	-22
$55-65$	4	60	1
$65-75$	2	70	2
$75-85$	1	80	-7
Total	$n=\Sigma f_{i}=35$		3

Using the formula :

$$
\begin{aligned}
\text { Mean } & =a+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h \\
& =50+\frac{(-36)}{35} \times 10 \\
& =50-\frac{72}{7} \\
& =50-10.29 \\
& =39.71
\end{aligned}
$$

Hence the mean percentage of female teachers $=$ 39.71 .

> Or

The mean of the following distribution is 8.1. Find the value of p.

Classes	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Frequeney	1	2	1	p	6	2	3

Solution
Calculation of Mean

Classes	Frequency $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$f_{i} x_{i}$
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	p	7	$7 p$
$8-10$	6	9	54
$10-12$	2	11	22
$12-14$	3	13	39
Total	$n=\Sigma f_{i}=15+p$		$\Sigma f_{i} x_{i}=127+.7 p$

Using the formula :

$$
\begin{aligned}
& \text { Mean }=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
& \Rightarrow \quad \text { (given) } 8.1=\frac{127+7 p}{15+p} \\
& \Rightarrow \quad 121.5+8.1 p=127+7 p \\
& \Rightarrow \quad 8.1 p-7 p=127-121.5 \\
& \Rightarrow \quad 1.1 p=5.5 \\
& \Rightarrow \quad \cdot p=5.5 \div 1.1 \\
& \Rightarrow \quad p=5
\end{aligned}
$$

28. The following distribution shows the number of runs scored by some top batsman of the world in one-day cricket matches :

Runs-scored	Number of batsman
$3000-4000$	4
$4000-5000$	18
$5000-6000$	9
$6000-7000$	7
$7000-8000$	6
$8000-9000$	3
$9000-10000$	1
$10000-11000$	

Find the mode.
Solution. Since the maximum frequency or batsman is 18 , therefore, the modal class is $4000-5000$. Thus, the lower limit (l) of he modal class $=4000$.

$$
\therefore \quad f_{1}=18, f_{0}=4, f_{2}=9, h=1000
$$

- Using the formula :

$$
\begin{aligned}
\text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& \left.=4000-\frac{18-4}{2 \times 18-4}\right) \times 1000 \\
& =4000 \div \frac{14}{36-13} \times 1000 \\
& =4000+\frac{14000}{23} \\
& =4000+608.70 \\
& =4608.70
\end{aligned}
$$

So, the maximum number of batsman scored $\mathbf{4 6 0 8 . 7 0}$ runs.

Section 'D'

Queśtion numbers 29 to 34 carry 4 marks each.
29. If two zeroes of the polynomial $x^{4}+3 x^{3}-20 x^{2}-6 x+36$ are $\sqrt{2}$ and $-\sqrt{2}$, find the other zeroes of the polynomial.

Solution. Since two zeroes are $\sqrt{2}$ and $-\sqrt{2}$, therefore $(x-\sqrt{2})(x+\sqrt{2})=x^{2}-2$ is a factor of the given polynomial.

Now, we divide the given polynomial by $x^{2}-2$.

$$
\begin{aligned}
\begin{aligned}
\left.x^{2}-2\right) \\
\frac{x^{2}+3 x-18}{x^{4}+3 x^{3}-20 x^{2}-6 x+36} \\
\frac{x^{4}-2 x^{2}}{3 x^{3}-18 x^{2}-6 x+36} \\
\frac{3 x^{3}-6 x}{-18 x^{2}+36} \\
-18 x^{2} \pm 36
\end{aligned}
\end{aligned} \quad\left[\text { Sirst term of quotient is } \frac{x^{4}}{x^{2}}=\dot{x}^{2}\right]
$$

So, $x^{4}+3 x^{3}-20 x^{2}-6 x+36=\left(x^{2}-2\right)\left(x^{2}+3 x-18\right)$

$$
\begin{aligned}
& =(x-\sqrt{2})(x+\sqrt{2})\left[x^{2}+6 x-3 x-18\right] \\
& =(x-\sqrt{2})(x+\sqrt{2})[x(x)+6)-3(x+6)] \\
& =(x-\sqrt{2})(x+\sqrt{2})(x+6)(x-3)
\end{aligned}
$$

So, the zeroes of $x^{2}+3 x-18=(x+6)(x-3)$ are given by $x=-6$ and $x=3$.
Hence, the other zeroes of the given polynomial are - 6 and 3.
30. Solve the follówing system of linear equations graphically :

$$
\begin{array}{r}
3 x+y-12=0 \\
x-3 y+6=0
\end{array}
$$

Shade the region bounded by these lines and the \dot{x}-axis. Also, find the ratio of areas of triangles formed by given lines with the x-axis and the y-axis.

Solution. The given system of linear equations are

$$
\begin{equation*}
3 x+y-12=0 \Rightarrow y=12-3 x \tag{1}
\end{equation*}
$$

and $x-3 y+6=0 \Rightarrow y=\frac{x+6}{3}$
Let us dray the graphs of the equations (1) and (2) by finding two solutions for each of these equations.

They are given in tables :

Plot the points $A(4,0), B(0,12), C(-6,0), D(0,2)$ on graph paper and draw the lines $A B$ and $C D$ passing through them to represent the equations, as shown in figure.

The two lines intersect at the point $L(3,3)$. So, $\boldsymbol{x}=\mathbf{3}, \boldsymbol{y}=\mathbf{3}$ is the required solution of the system of linear equations.

Area of triangle formed by lines with x-axis

$$
\begin{aligned}
& =\text { Area of } \triangle A L C C \\
& =\frac{1}{2} \times \text { B2se } \times \text { Height } \\
& =\frac{1}{2} \times 10 \times 3
\end{aligned}
$$

$$
15 \text { sq. units. }
$$

Area of triange formed by lines with y-axis

$$
=\text { Area of } \triangle B L D
$$

$=\frac{1}{2} \times$ Base \times Height

$$
=\frac{1}{2} \times 10 \times 3
$$

$[\because$ Base $=B D=10$ units and Height $L N=3$ units]

Thus, the ratio of areas of the triangles formed by given lines with x-axis and the y-axis

$$
=\frac{\text { Area of } \triangle A L C}{\text { Area of } \triangle B L D}
$$

$$
\begin{aligned}
& =\frac{15 \text { sq. units }}{15 \text { sq. units }}=\frac{1}{1} \\
& =1: 1 .
\end{aligned}
$$

31. Prove that the ratio of areas of two similar triangles is equal to the square of their corresponding sides.

Solution. Given : $\triangle A B C$ and $\triangle P Q R$ such that $\triangle A B C \sim \triangle P Q R$.
To prove : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$

Construction : Draw $A D \perp B C$ and $P S \perp Q \dot{R}$.

Proof : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P S}$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\tilde{B} C \times A D}{Q R \times P S}$
Now, in $\triangle A D B$ and $\triangle P S Q$, we have.

$$
\begin{gathered}
\angle B=\angle Q \\
\angle A D B=\angle P S Q
\end{gathered}
$$

[As $\triangle A B C \sim \triangle P Q R$]
$\left[\right.$ Each $\left.=90^{\circ}\right]$

$$
\text { 3rd } \angle B A D=3 \mathrm{rd} \angle Q P S
$$

Thus, $\triangle A D B$ and $\triangle P S Q$ are equiangular and hence, they are similar.
Consequently $\frac{A D}{P S}=\frac{A B}{P Q}$
[If $\triangle s$ are similar, the ratio of their corresponding sides is same]
But

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{B C}{Q R} \tag{3}
\end{equation*}
$$

$\Rightarrow \quad \frac{A D}{P S}=\frac{B C}{Q R}$
Now, from (1) and (3), we get

$$
\begin{align*}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C}{Q R} \times \frac{B C}{Q R} \\
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}} \tag{4}
\end{align*}
$$

As $\triangle A B C \sim \triangle P Q R$, therefore

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P} \tag{5}
\end{equation*}
$$

Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$
[From (4) and (5)]

Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Solution. Given : A right triangle $A B C$, right angled at B.
To prove : $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
i.e., $\quad A C^{2}=A B^{2}+B C^{2}$

Construction : Draw $B D \perp A C$
Proof: $\triangle A D B \sim \triangle A B C$.
[If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.]

$$
\begin{array}{lrl}
\text { So, } & \frac{A D}{A B} & =\frac{A B}{A C} \\
\Rightarrow & A D \cdot A C & =A B^{2} \tag{1}
\end{array}
$$

$$
\text { Also, } \triangle B D C \sim \triangle A B C
$$

So,

$$
\begin{equation*}
\frac{C D}{B C}=\frac{B C}{A C} \tag{2}
\end{equation*}
$$

$\Rightarrow \quad C D . A C=B C^{2}$

[Sides are proportional]
[Same reasoning as above]
[Sides are proportional]

Adding (1) and (2), we have
$A D \cdot A C+C D \cdot A C=A B^{2}+B C^{2}$
$\Rightarrow(A D+C D) A C=A B^{2}+B C^{2}$
$\Rightarrow \quad A C \cdot A C=A B^{2}+B C^{2}$
Hence, $\quad A C^{2}=A B^{2}+B C^{2}$
32. The median of the following data is 20.75. Find the missing frequencies x and y, if the total frequency is 100 .

Solution. Here, the missing frequencies are x and y.

Class Interval	Frequency	Cumulative Frequency
$0-5$	7	7
$5-10$	10	17
$10-15$	x	$17+x$
$15-20$	13	$30+x$
$20-25$	y	$30+x+y$
$25-30$	10	$40+x+y$
$30-35$	14	$54+x+y$
$35-40$	9	$63+x+y$
Total	100	

It is given that $n=100=$ Total frequency

$$
\begin{align*}
\therefore & & 63+x+y & =100 \\
\Rightarrow & & x+y & =100-63 \\
\Rightarrow & & x+y & =37 \\
\Rightarrow & & y & =37-x \tag{1}
\end{align*}
$$

$$
\frac{n}{2}=\frac{100}{2}=50 \text { lies in the class-intery } 20-25
$$

The median is 20.75 (given), which lies in the class $20-25$.
So, $l=$ lower limit of median class $=20$
$f=$ frequency of median class $=y$
$c f=$ cumulative frequency of class preceding the median class $=30+x$
$h=$ class size $=5$
Using the formula:

$$
\text { Median }=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h
$$

$$
\Rightarrow \quad .20 .75=20+\left(\frac{\frac{100}{2}-(30+x)}{7}\right) \times 5
$$

$$
\Rightarrow \quad n^{0.75}-\left(\frac{50-30-x}{y}\right) \times 5
$$

$$
\Rightarrow \quad \frac{3}{4}=\frac{(20-x) \times 5}{y}
$$

$$
\begin{aligned}
3 y & =400-20 x \\
x & =400-20 x
\end{aligned}
$$

$$
\begin{aligned}
3(37)-x) & =400-20 x \\
111-3 x & =400-20 x
\end{aligned}
$$

$$
17 x=289
$$

$$
x=17
$$

Substituting $x=17$ in (1), we get

$$
y=37-17=20
$$

Hence, the missing frequencies are $x=17$ and $y=\mathbf{2 0}$.

33. Prove that:

$$
\frac{\cot ^{3} \theta}{1+\cot ^{2} \theta}+\frac{\tan ^{3} \theta}{1+\tan ^{2} \dot{\theta}}=\sec \theta \cdot \operatorname{cosec} \theta-2 \sin \theta \cos \theta
$$

Solution. We have

$$
\begin{aligned}
& \text { L.F.S. }=\frac{\cot ^{3} \theta}{1+\cot ^{2} \theta}+\frac{\tan ^{3} \theta}{1+\tan ^{2} \theta} \\
& =\frac{\cot ^{3} \theta^{-}}{\operatorname{cosec}^{2} \theta}+\frac{\tan ^{3} \theta}{\sec ^{2} \theta} \\
& =\sin ^{2} \theta \times \frac{\cos ^{3} \theta}{\sin ^{3} \theta}+\cos ^{2} \theta \times \frac{\sin ^{3} \theta}{\cos ^{3} \theta} \\
& =\frac{\cos ^{3} \theta}{\sin \theta}+\frac{\sin ^{3} \theta}{\cos \theta} \\
& =\frac{\cos ^{4} \theta+\sin ^{4} \theta}{\sin \theta \cos \theta} \\
& =\frac{\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}}{\sin \theta \cos \theta} \\
& =\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta}{\sin \theta \cos \theta} \\
& {\left[\because a^{2}+b^{2}=(a+b)^{2}-2 a b\right]} \\
& -=\frac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{\sin \theta \cos \theta} \\
& =\frac{1}{\sin \theta \cos \theta}-\frac{2 \sin ^{2} \theta \cos ^{2} \theta}{\sin \theta \cos \theta} \\
& =\sec \theta \cdot \operatorname{cosec} \theta-2 \sin \theta \cos \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

Or

Without using trigonometrical tables, evaluate :

$$
\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}}
$$

Solution. We have
$\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}}$

$$
=\frac{\cos \left(90^{\circ}-32^{\circ}\right)}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos \left(90^{\circ}-22^{\circ}\right)}-\frac{\cos 38^{\circ} \operatorname{cosec}\left(90^{\circ}-38^{\circ}\right)}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan \left(90^{\circ}-18^{\circ}\right) \tan \left(90^{\circ}-35^{\circ}\right)}
$$

$=\frac{\sin 32^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\sin 22^{\circ}}-\frac{\cos 38^{\circ} \sec 38^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \cot 18^{\circ} \cot 35^{\circ}}$

$$
\left[\because \cos \left(90^{\circ}-\theta\right)=\sin \theta, \operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta, \tan \left(90^{\circ}-\theta\right)=\cot \theta\right]
$$

$$
=1+1-\frac{\cos 38^{\circ} \sec 38^{\circ}}{\left(\tan 18^{\circ} \cdot \cot 18^{\circ}\right) \tan 60^{\circ}\left(\tan 35^{\circ} \cdot \cot 35^{\circ}\right)}
$$

$$
=2-\frac{1}{(1)(\sqrt{3})(1)}
$$

$$
\left[\begin{array}{l}
\because \cos \theta \cdot \sec \theta=1 \\
\tan \theta \cdot \cot \theta=\text { Iand } \tan 60^{\circ}=\sqrt{3}
\end{array}\right]
$$

$$
=2-\frac{1}{\sqrt{3}}
$$

34. Prove that :

$$
(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}
$$

Solution. We have
L.H.S. $=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$

$$
\begin{aligned}
& =\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right) \\
& =\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right) \\
& =\left(\frac{\cos ^{2} A}{\sin A}\right)\left(\frac{\sin ^{2} A}{\cos A}\right)
\end{aligned}
$$

$$
=\cos A \cdot \sin A .
$$

Now, R.H.S. $=\frac{1}{\tan A+\cot A}$

$=\sin A \cos A$

$$
\left[\because \sin ^{2} A+\cos ^{2} A=1\right]
$$

Hence, LL.H.S. $=$ R.H.S.

