CCE SAMPLE QUESTION PAPER

FIRST TERM (SA-I) MATHEMATICS

(With Solutions)
CLASS X

Tme Allowed 3 [0 3 3 $1 /$ Hours]

General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section Bcomprises of 8 questions of 2 marks each, Section C comprises of 10 questions 8 marks each and Section D comprises of 6 questions of 4 marks each.
(iii) Question numbers 1 to 10 in Section A are multipte chozee questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 question of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Séction A

Question numbers 1 to 10 are of one payrk each.

1. Which of the following mumbers has non-terminating repeating decimal expansion ?
(a) $\frac{7}{80}$
(b) $\frac{17}{320}$
(c) $\frac{84}{400}$
(d) $\frac{93}{420}$

Solution. Choice (an is correct.

$$
\frac{93}{420}=\frac{31}{140}=\frac{31}{2^{2} 25^{1} \times 7^{1}}
$$

\because The denoninetor has a factor other than 2 or 5 .
2. In figure, what values of x will make $D E \| A B$?

(a) 3
(b) 2
(c) 5
(d) 4

Solution. Choice (b) is correct.
In triangle $C A B$, if $D E$ divides $C A$ and $C B$ in the same ratio, then $D E \| A B$.

$$
\left.\begin{array}{rlrl}
& \therefore & \cdot \frac{C D}{D A} & =\frac{C E}{E B} \\
& \Rightarrow & \frac{x+3}{3 x+19} & =\frac{x}{3 x+4} \\
& \Rightarrow & (x+3)(3 x+4) & =x(3 x+19) \\
& \Rightarrow & 3 x^{2}+4 x+9 x+12 & =3 x^{2}+19 x \\
& \Rightarrow & 19 x-4 x-9 x & =12 \\
& \Rightarrow & & 6 x
\end{array}\right)=12 .
$$

3. In figure, the graph of a polynomial $p(x)$ is shown. The number of zeroes of $p(x)$ is
(a) 2
(b) 3
(c) 4
(d) 1

Solution. Choice (a) is correct.
The number of zeroes of $g(x)$ is 2 as the graph intersects the x-axis at two points viz., $(-4,0)$ and ($-1,0$) in figure.
4. If $\sin 5 \theta=\cos 4 \theta$, where $5 \theta /$ and 4θ are acute angles, then the value of θ is
(a) 15°
(b) 8°
(c) 10°
(d) 12°

Solution. Cherice (c) is correct.
We have
$\Rightarrow \cos \left(90^{\circ}-5 \theta\right)=\cos 4 \theta$
$\begin{array}{ll}\Rightarrow & 90^{\circ} \\ \Rightarrow \\ \Rightarrow & 40 \\ \end{array}$
5. If $\tan \theta=\frac{12}{13}$, then the value of $\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta^{\circ}-\sin ^{2} \theta}$ is
(a) $\frac{307}{25}$
(b) $\frac{312}{25}$
(c) $\frac{309}{25}$
(d) $\frac{316}{25}$

Solution. Choice (b) is correct.
We have
$\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
$=\frac{2 \sin \theta \cos \theta / \cos ^{2} \theta}{\left(\cos ^{2} \theta-\sin ^{2} \theta\right) / \cos ^{2} \theta} \quad$ [Dividing numerator and denominator by $\cos ^{2} \theta$].
$=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$=\frac{2 \times \frac{12}{13}}{1-\left(\frac{12}{13}\right)^{2}}$
$=\frac{24 / 13}{1-\frac{144}{169}}$
$=\frac{24}{13} \times \frac{169}{169-144}$
$=\frac{24}{13} \times \frac{169}{25}$
$=\frac{24 \times 13}{.25}$
$=\frac{312}{25}$
6. In figare $A B=5 \sqrt{3} \mathrm{~cm}, D C=4 \mathrm{~cm}, B D=3 \mathrm{~cm}$, then $\tan \theta$ is

(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{2}{\sqrt{3}}$
(c) $\frac{4}{\sqrt{3}}$
(d) $\frac{.5}{\sqrt{3}}$

Solution. Choice (a) is correct.
In $\triangle C B D$, we have

$$
\begin{aligned}
& & B C^{2}=B D^{2}+\dot{D} C^{2} \\
\Rightarrow & B C^{2} & =(3)^{2}+(4)^{2}=25=(5)^{2} \\
\Rightarrow & B C & =5
\end{aligned}
$$

In $\triangle A B C, \tan \theta=\frac{B C}{A B}=\frac{5}{5 \sqrt{3}}=\frac{1}{\sqrt{3}}$:
7. If HCF $(96,404)-4$, then $\operatorname{LCM}(96,404)$ is
(a) 9626
(b) 9696
(c) 9656
(d) 9676

Solution. Choice (b) is correct.
We know that ;

> HCF \times LCM $=$ Product of two positive numbers
> $\Rightarrow \quad 4 \times \mathrm{LCM}=96 \times 404$
$\Rightarrow \quad \mathrm{LCM}=\frac{96 \times 404}{4}$.
$\Rightarrow \quad$ LCM $=96 \times 101$
$\Rightarrow \quad$ LCM = 9696
8. If the pair of linear equations $100 \%+5 y-(k)$
5) $=0$ and $20 x+10 y-k=0$ have infinitely many solutions, then the value of k is
(a) 2
(c) 10
(b) 5
(e) 8

Solution. Choice (c) is correct.
For a pair of linear equations to have infinitely many solutions:

9. If $\tan \theta=\frac{3}{2}$, then the value of $\frac{(2+2 \sec \theta)(1-\sec \theta)}{(2+2 \operatorname{cosec} \theta)(1-\operatorname{cosec} \theta)}$ is
(a) $\frac{81}{16}$
(b) $\frac{75}{16}$
(c) $\frac{83}{16}$
(d) $\frac{77}{16}$

Solution. Choice (a) is correct.
$\frac{(2+2 \sec \theta)(1-\sec \theta)}{(2+2 \operatorname{cosec} \theta)(1-\operatorname{cosec} \theta)}$

$$
\begin{aligned}
& =\frac{2(1+\sec \theta)\left(1-\sec ^{-} \theta\right)}{2(1+\operatorname{cosec} \theta)(1-\operatorname{cosec} \theta)} \\
& =\frac{2\left(1-\sec ^{2} \theta\right)}{2\left(1-\operatorname{cosec}^{2} \theta\right)} \\
& =\frac{1-\sec ^{2} \theta}{1-\operatorname{cosec}^{2} \theta} \\
& =\frac{1-\left(1+\tan ^{2} \theta\right)}{1-\left(1+\cot ^{2} \theta\right)} \\
& =\frac{-\tan ^{2} \theta}{-\cot ^{2} \theta} \\
& =\tan ^{2} \theta \times \tan ^{2} \theta \\
& =\tan ^{4} \theta \\
& =\left(\frac{3}{2}\right)^{4} \\
& =\frac{\mathbf{8 1}}{\mathbf{1 6}}
\end{aligned}
$$

10. The mean of first 20 natural numbers is
(a) 7.5
(c) 9.5

Solution. Choice (d) is correct.
(b) 8.5
(d) 10.5

Mean of first 20 natural numbers

$$
=\frac{\text { Sum of observations from } 1 \text { to } 20}{\text { Fumberoforservations }}
$$

$$
\left[\because \text { Sum of first ' } n \text { ' natural numbers }=\frac{n(n+1)}{2}\right]
$$

Section B

Question numbers 11 to 18 carry 2 marks each.
11. Check whether $6^{\boldsymbol{n}}$ can end with the digit 0 for any natural number n.

Solution. We know that any positive integer ending with the digit 0 is divisible by 5 and so its prime factorisation must contain the prime 5 .

We have

$$
6^{n}=(2 \times 3)^{n}=2^{n} \times 3^{n}
$$

\Rightarrow There are two prime in the factorisation of $6^{n}=2^{n} \times 3^{n}$
$\Rightarrow 5$ does not occur in the prime factorisation of 6^{n} for any n.
[By uniqueness of the Fundamental Theorem of Arfithenetic]
Hence, 6^{n} can never end with the digit 0 for any natural number.
12. Find the zeroes of the quadratic polynomial $8 x^{2}-21-22 x$ and verify the relationship between the zeroes and the coefficients of the prypomial.

Solution. We have

$$
\begin{aligned}
8 x^{2}-21-22 x & =8 x^{2}-22 x-21 \\
& =8 x^{2}-28 x+6 x-21 \\
& =4 x(2 x-7)+3(2 x-7) \\
& =(2 x-7)(4 x+3)
\end{aligned}
$$

So, the value of $8 x^{2}-22 x-21$ is zero, when $2 x-7=0$ or $4 x+3=0$ ie., when $x=\frac{7}{2}$ or $x=-\frac{3}{4}$.
Therefore, the zeroes of $8 x^{2}-22 x-21$ are $\frac{7}{2}$ ape $-\frac{3}{4}$. Now, sum of zeroes $=\frac{7}{2}+\left(-\frac{3}{4}\right)$

$$
\begin{aligned}
& =\frac{14-3}{4} \\
& =\frac{11}{4}
\end{aligned}
$$

Product of zeroes $=\frac{7}{2} \times\left(-\frac{3}{4}\right)$

$$
\begin{aligned}
& =\frac{22}{8} \\
& \left.=\frac{-(22)}{8}\right) \\
& =\frac{\text { Coefficient of } x)}{\text { Coefficient of } x^{2}}
\end{aligned}
$$

13. A and B each have certain number of oranges. A says to B, "If you give me 10 of your oranges, I will have twice the number of oranges left with you". B replies, "If

you give me 10 of your oranges, I will have the same number of oranges as left with ${ }^{-}$ you". Find the number of oranges with A and B separately.

Solution. Let A has x number of oranges and B has y number of oranges.
Then, according to the given condition, we have.

$$
\begin{array}{rlrl}
& & x+10 & =2(y-10) \\
\Rightarrow & & x+10 & =2 y-20 \\
\Rightarrow & & x & =2 y-30 \\
\text { and } & y+10 & =x-10 \\
\Rightarrow & & x & =y+20
\end{array}
$$

From (1) and (2), we have

$$
\begin{aligned}
& & 2 y-30 & =y+20 \\
\Rightarrow & & 2 y-y & =30+20 \\
\Rightarrow & & y & =50
\end{aligned}
$$

Substituting $y=50$ in (2), we get

$$
x=50+20
$$

$\Rightarrow \quad$ - $\quad x=70$
Hence, A has $\mathbf{7 0}$ oranges and B has 50 oranges.
14. Without using trigonometric tables, find the value o

$$
\begin{aligned}
& \frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\cos 57^{\circ} \operatorname{cosec} 33^{\circ}-2 \cos 60^{\circ} \\
& \text { We have } \\
& 0^{\circ}
\end{aligned}
$$

$$
\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\cos 57^{\circ} \operatorname{cosec} 33^{\circ}-2 \cos 60^{\circ}
$$

$$
=\frac{\cos \left(90^{\circ}-20^{\circ}\right)}{\sin 20^{\circ}}+\cos \left(90^{\circ}-33^{\circ}\right) \cdot \operatorname{cosec} 33^{\circ}-2 \cos 60^{\circ} .
$$

$$
=\frac{\sin 20^{\circ}}{\sin 20^{\circ}}+\sin 33^{\circ} \cdot \operatorname{cosec} 33^{\circ}-2 \cos 60^{\circ} \quad\left[\because \cos \left(90^{\circ}-\theta\right)=\sin \theta\right]
$$

$$
=1+1-2 \times \frac{1}{2}\left\langle\quad\left[\because \sin \theta \cdot \operatorname{cosec} \theta=1, \cos 60^{\circ}=\frac{1}{2}\right]\right.
$$

$$
=1+1-1
$$

$=1$.
If A, B, C are interior angles of $\triangle A B C$, then show that

$$
\cos \left(\frac{B+C}{2 y}\right)=\sin \frac{A}{2}
$$

Solutioha. If A, B, C are interior angles of $\triangle A B C$, then

$$
A+B+C=180^{\circ}
$$

$$
\begin{aligned}
& \Rightarrow \frac{B+C}{2}=\frac{180^{\circ}-A}{2} \\
& \Rightarrow \frac{B+C}{2}=90^{\circ}-\frac{A}{2} \\
& \Rightarrow \cos \left(\frac{B+C}{2}\right)=\cos \left(90^{\circ}-\frac{A}{2}\right)
\end{aligned}
$$

$\Rightarrow \cos \left(\frac{B+C}{2}\right)=\sin \frac{A}{2}$.
15. If $A B C$ is an equilateral triangle with $A D \perp B C$, then prove $A D^{2}=3 D C^{2}$.

Solution. Let $A B C$ be an equilateral triangle and $A D \perp B C$.
In $\triangle A D B$ and $\triangle A D C$, we have

		$A B$	$=A C$
	$\angle B$	$=\angle C$	[given]
and	$\angle A D B$	$=\angle A D C$	$\left[\right.$ Each $\left.=60^{\circ}\right]$
\therefore	$\triangle A D B$	$\equiv \triangle A D C$	$\left[\right.$ Each $\left.90^{\circ}\right]$
\Rightarrow	$B D$	$=D C$	
\therefore	$B C$	$=B D+D C=D C+D C=2 D C .$. (2) $\left.\begin{array}{ll}\text { [using (1) }\end{array}\right]$	

In right angled $\triangle A D C$, we have

$$
\begin{aligned}
& & A C^{2} & =A D^{2}+D C^{2} \\
& \Rightarrow & B C^{2} & =A D^{2}+D C^{2} \\
\Rightarrow & & (2 D C)^{2} & =A D^{2}+D C^{2} \\
& \Rightarrow & A D^{2} & =4 D C^{2}-D C^{2} \\
& \Rightarrow & A D^{2} & =3 D C^{2}
\end{aligned}
$$

$[\because A C=B C$ sides of an equilateral $\Delta]$
[using (2)]
16. If in figure, $\triangle A B C$ and $\triangle A M P$ are right angled at B and M respectively, prove that

$C A \times M P=P A \times B C$

Solution. In $\triangle A B C$ and $\triangle A M P$. we have $\angle A B C=\angle A M P=90^{\circ}$
and $\quad \angle B A C=\angle M A P$
Therefore, by AA-criterion of similarity, we tave
$\triangle A B C \sim \triangle A M P$
$\Rightarrow \quad \frac{C A}{B C}=\frac{P A}{M P}$
$\Rightarrow \quad C A \times M P=P A \times B C$

17. Given below is the distribution of marks obtained by 229 students :

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	Total
No. of students	12	30	34	65	45	25	18	229

Write the above distribution as more than type cumulative frequency distribution.
Solution. Cumarative frequency table as more than type is given below :

Marks	No of students [3requency (f)]	Marks more than	Cumulative frequency $(c f)$
$10-20$	12	10	$229(217+12)$
20	30	20	$217(187+30)$
$30-40$	34	30	$187(153+34)$
$40-50$	65	40	$153(65+88)$
$50-60$	45	50	$88(45+43)$
$60-70$	25	60	$43(25+18)$
70	18	70	18

18. The mode of the following distribution is 55 . Find the value of x.

Class-interval	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$
Frequency	6	7	x	15	10	8

Solution. Since mode $=55$ (given), therefore, the modal class is $45-60$. The lower limit (l) of the modal class is 45 .

$$
f_{1}=15, f_{0} \doteq x, f_{2}=10, h=15
$$

Using the formula :

$$
\begin{array}{rlrl}
& & \text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& & & 55=45+\frac{15-x}{2 \times 15-x-10} \times 15 \\
\Rightarrow & & 55-45= & \frac{15-x}{30-x-10} \times 15 \\
\Rightarrow & & 10=\frac{15-x}{20-x} \times 15 \\
& \Rightarrow & 200-10 x=225-15 x \\
\Rightarrow & 15 x-10 x=225-200 \\
\Rightarrow & & 5 x=25 \\
\Rightarrow & x & =5
\end{array}
$$

Hence, the value of x is 5 .

Section 0

Question numbers 19 to 28 carry 3 marks each.
19. Prove that $n^{2}-n$ is divisible by 2 for any positive integer n.

Solution. We know that any positive integer is of the form $2 m$ or $2 m+1$ for some positive integer m.

When $n=2 m$, then

$$
\begin{aligned}
n^{2}-n & =(2 m)^{2}-2 m \\
& =4 m 2^{2}-2 m \\
& =2 m(2 m-1) \\
& =2 p, \text { where } p)=m(2 m-1)
\end{aligned}
$$

$\Rightarrow n^{2}-n$ is divisible by 2

When $n=2 \boldsymbol{p} n+1$, then

$\Rightarrow n^{2}-n$ is divisible by 2 .
Hence $n^{2}-n$ is divisible by 2 for any positive integer n.
20. Prove that $\frac{7}{3} \sqrt{5}$ is irrational number.

Solution. Let us assume to the contrary that $\frac{7}{3} \sqrt{5}$ is rational.
Therefore, there exist co-prime positive integers p and q. such that

$$
\begin{aligned}
& \frac{7}{3} \sqrt{5} & =\frac{p}{q} \\
\Rightarrow & \sqrt{5} & =\frac{3 p}{7 q}
\end{aligned}
$$

Since p and q are integers, we get $\frac{3 p}{7 q}$ is rational, and so $\frac{7}{3} \sqrt{5}$ isrational.
But this contradicts the fact that $\sqrt{5}$ is irrational.
This contradiction has arisen because of our incorrect as omption that $\frac{7}{3} \sqrt{5}$ is rational.
So, we conclude that $\frac{7}{3} \sqrt{5}$ is irrational.
Or
Show that $5-2 \sqrt{3}$ is an irrational number.
Solution. Let us assume, to contrary, that $5-2 \sqrt{3}$ is rational.
That is, we can find coprime a and b (b) suen that)

$$
5-2 \sqrt{3}=\frac{a}{b}
$$

Therefore, $.2 \sqrt{3}=5-\frac{a}{b}$

$\begin{array}{ll}\Rightarrow & 2 \sqrt{3}=\frac{5 b-a}{b} \\ \Rightarrow & \sqrt{3}=\frac{5 b-a}{2 b}\end{array}$
Since a and b are integers, we get $\frac{5 b-a}{2 b}$ is rational, and so $\sqrt{3}$ is rational.
But this contratictsthe fact that $\sqrt{3}$ is irrational.
This contradiction has arysen because of our incorrect assumption that $5-2 \sqrt{3}$ is rational.
So, we conelude that $5-2 \sqrt{3}$ is irrational.
21. A two digit number is obtained by either multiplying sum of the digits by 8 and adding 1 or by multiplying the difference of the digits by 13 and adding 2. Find the naimbers.

Golution Let the unit's place digit be x and the ten's place digit be y.
Then, number $=10 y+x$
According to the given condition, we have

$$
10 y+x=8(x+y)+1
$$

$$
\begin{align*}
& \Rightarrow \quad .8 x-x=10 y-8 y-1 \\
& \Rightarrow \quad 7 x=2 y-1 \text {. } \tag{1}\\
& \text { and } \quad 10 y+x=13(y-x)+2 \\
& \Rightarrow \quad x+13 x=13 y-10 y+2 \\
& \Rightarrow \quad 14 x=3 y+2 \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
2(7 x)=3 y+2
$$

$\Rightarrow \quad 2(2 y-1)=3 y+2$
$\Rightarrow \quad 4 y-2=3 y+2$
$\Rightarrow \quad 4 y-3 y=2+2$
$\Rightarrow \quad y=4$
Substituting $y=4$ in (1), we get

$$
7 x=2(4)-1
$$

$\Rightarrow \quad 7 x=7$
$\Rightarrow \quad x=1$
Hence, the number $=10 y+x$

$$
\begin{aligned}
& =10(4)+1 \\
& =41
\end{aligned}
$$

Or

The taxi charges in a city comprise of a fixed charge together with the charge for the distance covered. For a journey of 10 kmg the charge paid is ₹ 200 and for journey of 15 km the charge paid is ₹ 275 . What will a person have to pay for travelling a distance of 25 km ?

Solution. Let the fixed charges of tax $b \in ₹ x$ and the running charges of taxi be ₹ y per km .
Then, according to the given conditions we have

$$
\text { and } \quad \begin{align*}
& x+10 y=200 \tag{1}\\
& x+15 y=275 \tag{2}
\end{align*}
$$

Subtracting (1) from (2), we get
$(x+15 y)-(x+10 y)=275-200$
$\Rightarrow \quad 15 y-10 y=75$
$\Rightarrow \quad 5 y=75$
$\Rightarrow \quad y=15$
Substituting $y=15 \mathrm{~m}(1)$, we get

$$
\begin{array}{rlrl}
& & x+10(15) & =200 \\
\Rightarrow & x & =200-150 \\
\Rightarrow & & x=50
\end{array}
$$

\therefore Total charges for travelling a distance of 25 km

22. If α and β are the zeroes of the quadratic polynomial $f(x)=a x^{2}+b x+c$, then evaluate $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}$.

Soiution. Since α and β are the zeroes of the quadratic polynomial $f(x)=a x^{2}+b x+c$.

$$
\begin{equation*}
\therefore \quad \alpha+\beta=-\frac{b}{a} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \beta=\frac{c}{a} \tag{2}
\end{equation*}
$$

Now, $\quad \frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{\alpha^{4}+\beta^{4}}{\alpha^{2} \beta^{2}}$

$$
\begin{aligned}
& =\frac{\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2}} \\
& =\frac{\left(\alpha^{2}+\beta^{2}\right)^{2}-2\left(\frac{c}{a}\right)^{2}}{\left(\frac{c}{a}\right)^{2}}
\end{aligned}
$$

$$
=\frac{\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]^{2}-2 \frac{c^{2}}{a^{2}}}{\frac{c^{2}}{a^{2}}}
$$

$$
=\frac{\left[\left(-\frac{b}{a}\right)^{2}-2 \frac{c}{a}\right]^{2}-\frac{2 c^{2}}{d 2}}{\frac{c^{2}}{a^{2}}}
$$

$$
=\frac{\left(\frac{b^{2}}{a^{2}}-\frac{2 c}{a}\right)^{2}-\frac{2 c^{2}}{a^{2}}}{a^{2}}
$$

$$
=\frac{b^{4}+2 c^{2} a^{2}-4 a c b^{2}}{a^{2} e^{2}}
$$

23. If $\operatorname{cosec} \theta+\cot \theta=p$, prove that $\cos \theta=\frac{p^{2}-1}{p^{2}+1}$. Solution. We have

$$
\begin{aligned}
& \operatorname{cosec} \theta+\cot \theta & =p \\
\Rightarrow & \frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta} & =p \\
\Rightarrow & \frac{1+\cos \theta}{\sin \theta} & =p
\end{aligned}
$$

Squaring both sides, we have

$$
\frac{(1+\cos \theta)^{2}}{\sin ^{2} \theta}=p^{2}
$$

Now,

$$
\frac{p^{2}-1}{p^{2}+1}=\frac{\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2}-1}{\left(\frac{1+\cos \theta}{\sin \theta}\right)^{2}+1}
$$

$$
\Rightarrow \quad \frac{p^{2}-1}{p^{2}+1}=\frac{\left[(1+\cos \theta)-\sin ^{2} \theta\right] / \sin ^{2} \theta}{\left[(1+\cos \theta)^{2}+\sin ^{2} \theta\right) / \sin ^{2} \theta}
$$

$$
\Rightarrow \quad \frac{p^{2}-1}{p^{2}+1}=\frac{(1 /+\cos \theta)^{2}-\sin ^{2} \theta}{(1+\cos \theta)^{2}+\sin ^{2} \theta}
$$

$$
\Rightarrow \quad \frac{p^{2}-1}{p^{2}-1}=\frac{1+\cos ^{2} \theta+2 \cos \theta-\sin ^{2} \theta}{1+\cos ^{2} \theta+2 \cos \theta+\sin ^{2} \theta}
$$

$$
\Rightarrow \quad \frac{p^{2}-1}{p^{2}+1}=\frac{\cos ^{2} \theta+2 \cos \theta+\left(1-\sin ^{2} \theta\right)}{\left.\sin ^{2} \theta+\cos ^{2} \theta\right)+1+2 \cos \theta}
$$

$$
\Rightarrow \frac{p^{2}-1}{p^{2}+1}=\frac{\cos ^{2} \theta+2 \cos \theta+\cos ^{2} \theta}{1+1+2 \cos \theta}
$$

$\frac{p^{2}-1}{p^{2}+1}=\frac{2 \cos ^{2} \theta+2 \cos \theta}{2+2 \cos \theta}$
$\frac{p^{2}-1}{p^{2}+1}=\frac{2 \cos \theta(\cos \theta+1)}{2(1+\cos \theta)}$
$\frac{p^{2}-1}{p^{2}+1}=\cos \theta$

24. Show that

$$
2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1=0
$$

Solution.

L.H.S. $=2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1$

$$
\begin{aligned}
& =2\left[\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2}-\theta\right)^{3}\right]-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \\
& =2\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\left(\sin ^{2} \theta\right)^{2}-\left(\sin ^{2} \theta\right)\left(\cos ^{2} \theta\right)+\left(\cos ^{2} \theta\right)^{2}\right\}\right]-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1
\end{aligned}
$$

$$
\begin{aligned}
& \left(\operatorname{cosin}^{2} a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b b^{2}\right)\right]
\end{aligned}
$$

$$
=2\left[1\left(\sin ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta+\cos ^{4} \theta\right)\right]-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1 \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
$$

$$
=2 \sin ^{4} \theta-2 \sin ^{2} \theta \cos ^{2} \theta+2 \cos ^{4} \theta-3 \sin ^{4} \theta-3 \cos ^{4} \theta+1
$$

$$
=-\sin ^{4} \theta-\cos ^{4} \theta-2 \sin ^{2} \theta \cos ^{2} \theta+1
$$

$$
=-\left[\sin ^{4} \theta+\cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta\right]+1
$$

$$
=-\left[\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}+2\left(\sin ^{2} \theta\right)\left(\cos ^{2} \theta\right)\right]+1
$$

$$
=-\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}+1
$$

$$
=-1+1
$$

$$
=0
$$

$$
=\text { R.H.S. }
$$

25. In the figure, $\angle 1=\angle 2$ and $\angle 3=\angle 4$. Show that PT. QR = PR.ST

Solution. In $\triangle P S T$ and $\triangle R Q R$, we hate
[given]

		$\angle 1$
\Rightarrow	$\angle 1+\angle Q$	
\Rightarrow	$\angle Q P T$	$=\angle 2+\angle Q P T$
and		$\angle T P S=\triangle R P Q$
		$\angle 3=\angle 4$

[Adding $\angle Q P T$ on both sides]
$\Rightarrow \quad \frac{P T}{P R}=\frac{S T}{Q R} \quad[\because$ Corresponding sides of similar $\Delta \mathrm{s}$ are proportional]
26. In the figure, $A B C$ is a triangle with $\angle B=90^{\circ}$. Medians $A E$ and $C D$ of respective lengths $\sqrt{40} \mathrm{~cm}$ and 5 cm are drawn. Find the length of the hypotenuse $A C$.

Solution. In right-angled $\triangle A B E$, we have

$$
\begin{array}{ll}
\quad & A E^{2}=A B^{2}+B E^{2} \Rightarrow 40=A B^{2}+B E^{2} \\
\Rightarrow \quad & A B^{2}=40-B E^{2}=40-\left(\frac{B C}{2}\right)^{2} \\
\Rightarrow \quad & A B^{2}=40-\frac{B C^{2}}{4}
\end{array}
$$

$$
\begin{align*}
& \text { Also in right-angled } \triangle C B D \text {, we have } \\
& C D^{2}=B C^{2}+B D^{2} \Rightarrow 25=B C^{2}+B D^{2} \\
& \Rightarrow \quad B C^{2}=25-B D^{2}=25-\left(\frac{A B}{2}\right. \\
& \Rightarrow \quad B C^{2}=25-\frac{A B^{2}}{4} \tag{2}
\end{align*}
$$

$$
[\because C D=5]
$$

$$
\left[\because B D=\frac{1}{2} A B\right]
$$

In right-angled $\triangle A B C$, we have
$A C^{2}=A B^{2}+B C^{2}$
$\Rightarrow \quad A C^{2}=40-B C^{2}$
$\Rightarrow \quad A C^{2}=65-\frac{1}{4}\left(B C^{2}+A B^{2}\right)=65-\frac{1}{4} \times A C^{2}$
$\Rightarrow \quad 4 A C^{2}=260-A C^{2}$
$\Rightarrow \quad \Rightarrow A C^{2}-260=260 \div 5=52$
Henes $A C=\sqrt{52}=2 \sqrt{13} \mathrm{~cm}$.
27. Find mean of the following frequency distribution using step-deviation method:

Classthterval	$0-60$	$60-120$	$120-180$	$180-240$	$240-300$
Fुequency	22	35	44	25	24

Solution. Let the assumed mean be $a=150$ and $h=60$.

Class-Interval	Frequency $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-150}{60}$	$f_{i} u_{i}$
$0-60$	22	30	-2	-44
$60-120$	35	90	-1	-35
$120-180$	44	$150=a$	0	0
$180-240$	25	210	1	25
$240-300$	24	270	2	48
Total	$n=\Sigma f_{i}=150$			$\Sigma f_{i} u_{i}=-6$

By step-deviation method,

$$
\begin{aligned}
\text { Mean } & =a+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h \\
& =150+\frac{(-6)}{150} \times 60 \\
& =150-\frac{12}{5} \\
& =150-2.4 \\
& =147.6
\end{aligned}
$$

Hence, the mean is 147.6 .

Or

The mean of the following distribution is 52.5 . Mind the value of p.

Classes	$0-20$	$/\langle 20-40$	$40-60$	$60-80$	$80-100$
Frequency	15	22	37	p	21

Solution.
Calculation of Mean

Classes	Fregiuency $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$f_{i} x_{i}$
$0-20$	15	10	150
$20-40$	22	30	660
$40-60$		5	70
$60-80$		21	90
$80-100$		$n=\Sigma f_{i}=95 .+p$	
Total			1850

Using the farmula

$$
\begin{gathered}
\text { Mean) }=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
\Rightarrow \quad 1987.5+52.5 p=4550+70 p \\
\Rightarrow \quad 70 p-52.5 p=4987.5-4550
\end{gathered}
$$

$$
\begin{array}{rlrl}
\Rightarrow & & 17.5 p & =437.5 \\
\Rightarrow & & p=437.5 \div 17.5 \\
\Rightarrow & & p=25
\end{array}
$$

28. A survey regarding the height (in cm) of 51 girls of class X of a school was conducted and the following data was obtained :

Height (in cm)	Number of girls
Less than 140	4
Less than 145	11
Less than 150	29
Less than 155	40
Less than 160	46
Less than 165	51

Find the median height.
Solution. To calculate the median height, we need to find the class-interval and their corresponding frequencies.

Height (in cm)	No. of girls (f)	Cumulative frequency (cf)
135-140	4	4
140-145	7	-11
145-150	18.	29
150-155	4	40
155-160	6	46
160-165		51.

Here $\frac{n}{2}=\frac{51}{2}=25.5$. Now $145-150$ is the class whose cumulative frequency 29 is greater than $\frac{n}{2}=25.5$.
$\therefore 145-150$ is the mediar class.
From the table, $f=18, f=11, h=5$
Using the formula:

$$
=145+\frac{25.5-11}{18} \times 5
$$

$=145+\frac{14.5}{18} \times 5$
$=145+\frac{72.5}{18}$
$=145+4.03$
$=149.03$
Hence, the median height is 149.03 cm .

Question numbers 29 to 34 carry 4 marks each.
29. If the median of the distribution given below is 28.5 , find the values of x and y, if the total frequency is 60 .

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	Total
Frequency	5	x	20	15	y	5	60

Solution. Here the missing frequencies are x and y :

The median is 28.5 (given), which lies in the class $20-30$.
So,
$l=$ lower limit of median class $=20$
$f=$ frequency of median class $=20$
$c f=$ cumulative frequenc of class preceeding the median class $=5+x$ $h=$ class size $=10$
Using the formula :

Now, from 1 , we get $8+y=15 \Rightarrow y=15-8=7$
Hence, $x=8$ and $y=7$.
30. If $\tan A=n \tan B$ and $\sin A=m \sin B$, prove that $\cos ^{2} A=\frac{m^{2}-1}{\dot{n}^{2}-1}$.

Solution. We have to find $\cos ^{2} A$ in terms of m and n. This means that the angle B is to be eliminated from the given relations.

Now,

$$
\begin{aligned}
& \tan A=n \tan B \Rightarrow \tan B=\frac{1}{n} \tan A \Rightarrow \cot B=\frac{n}{\tan A} \\
& \sin A=m \sin B \Rightarrow \sin B=\frac{1}{m} \sin A \Rightarrow \operatorname{cosec} B=\frac{m}{\sin \cdot A}
\end{aligned}
$$

and,
Substituting the values of $\cot B$ and $\operatorname{cosec} B$ in $\operatorname{cosec}^{2} B-\cot ^{2} B=1$, we get
$\Rightarrow \quad \frac{m^{2}}{\sin ^{2} A}-\frac{n^{2}}{\tan ^{2} A}=1$
$\Rightarrow \quad \frac{m^{2}}{\sin ^{2} A}-\frac{n^{2} \cos ^{2} A}{\sin ^{2} A}=1$
$\Rightarrow \quad \frac{m^{2}-n^{2} \cos ^{2} A}{\sin ^{2} A}=1$
$\Rightarrow \quad m^{2}-n^{2} \cos ^{2} A=\sin ^{2} A$
$\Rightarrow \quad m^{2}-n^{2} \cos ^{2} A=1-\cos ^{2} A$
\Rightarrow
\Rightarrow $m^{2}-1=n^{2} \cos ^{2} A$
\Rightarrow
$m^{2}-1=\left(n^{2}-1\right) \cos ^{2} A$

$$
\frac{m^{2}-1}{n^{2}-1}=\cos ^{2} A
$$

Prove the identity :

$$
\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta
$$

Or

Solution. L.H.S.

$$
=\sqrt{(1+\sin \theta)}(1-\sin \theta) / \frac{(1+\sin \theta)}{(1+\sin \theta)}+\sqrt{\frac{(1-\sin \theta)}{(1+\sin \theta)} \times \frac{(1-\sin \theta)}{(1-\sin \theta)}}
$$

$$
\frac{1+\sin \theta}{\sqrt{1-\sin ^{2} \theta}}+\frac{1-\sin \theta}{\sqrt{1-\sin ^{2} \theta}}
$$

$$
=\int \frac{1+\sqrt{\sin \theta}}{\sqrt{\cos ^{2} \theta}}+\frac{1-\sin \theta}{\sqrt{\cos ^{2} \theta}}
$$

$$
=\frac{1+\sin \theta}{\cos \theta}+\frac{1-\sin \theta}{\cos \theta}
$$

$$
=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta} .
$$

$$
\begin{aligned}
& =\sec \theta+\tan \theta+\sec \theta-\tan \theta \\
& =2 \sec \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

31. Form the pair of linear equations in the following problem, and find their solutions graphically.

10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

Solution. Let x and y be the number of girls and number of boys respectively who took part in a Mathematics quiz, then according to the given information, we have the required pair of linear equations as

$$
\begin{align*}
& x-y=4 \tag{1}\\
& x+y=10 \tag{2}
\end{align*}
$$

Let us draw the graphs of the equations (1) and (2). For this, wefind two solvtions of each of the equations which are given in tables.

$$
x+y=10
$$

x	0	10
$y=10-x$	10	0

Plot the points $A(0,10), B(10,0), C(0,-4)$ and $D(4,0)$ on graph paper, and join the points to form the lines $A B$ and $C D$ as shown in the figure.

The two lines (1) and (2) intersect at the point (7,3). So, $x=7, y=3$ is the required solution of the pair of linear equations, i.e., the number of girls and boys who took part in the quiz are 7 and 3 , respectively.
32. Prove that :

$$
\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=\cos \theta+\sin \theta .
$$

Solution. We have

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta} \\
& =\frac{\cos \theta}{1-\frac{\sin \theta}{\cos \theta}}+\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}} \\
& =\frac{\cos \theta}{\left(\frac{\cos \theta-\sin \theta}{\cos \theta}\right)}+\frac{\sin \theta}{\left(\frac{\sin \theta-\cos \theta}{\sin \theta}\right)} \\
& =\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\cos \theta-\sin ^{2}} \\
& =\frac{1}{\cos \theta-\sin \theta}\left[\cos ^{2} \theta-\sin ^{2} \theta\right]
\end{aligned}
$$

$$
=\frac{1}{\cos \theta-\sin \theta}[(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)]
$$

$$
=\cos \theta+\sin \theta
$$

$$
=\text { R.H.S. }
$$

33. Find all zeroes of the polynomial $f(x)=2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$, if its two zeroes are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.

Solution. Since geroes of a polynomial $f(x)$ are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$, therefore

is a factoror the given polynomial.

Now, we divide the given polynomial by $2 x^{2}-3$.

$$
\begin{aligned}
& x^{2}-x-2 \\
& \begin{array}{c}
2 x ^ { 2 } - 3 \longdiv { 2 x ^ { 4 } - 2 x ^ { 3 } - 7 x ^ { 2 } + 3 x + 6 } \\
2 x^{4}-3 x^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mp 2 x^{3} \pm 3 x}{-4 x^{2}+6} \\
& +4 x^{2} \quad \pm 6 \\
& 0
\end{aligned}
$$

So,

$$
\begin{aligned}
2 x^{4}-2 x^{3}-7 x^{2}+3 x+6 & =\left(2 x^{2}-3\right)\left(x^{2}-x-2\right) \\
& =\left(2 x^{2}-3\right)\left[x^{2}-2 x+x-2\right] \\
& =\left(2 x^{2}-3\right)[x(x-2)+(x-2)] \\
& =2\left(x^{2}-\frac{3}{2}\right)(x+1)(x-2) \\
& =2\left(x-\sqrt{\frac{3}{2}}\right)\left(x+\sqrt{\frac{3}{2}}\right)(x+1)(x-2)
\end{aligned}
$$

Hence, all the zeroes of the given polynomial $f(x)=2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$ are $\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}}$, - 1 and 2.
34. Prove that in a triangle, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Solution. Given : A triangle $A B C$ in which a y he parallel to $B C$ intersects other two sides $A B$ and $A C$ at D and E respectively.

To prove : $\frac{A D}{D B}=\frac{A E}{E C}$
Construction : Join $B E C D$ and dray $D M \perp A C$ and $E N \perp A B$.
Proof: Since $E N$ is perpendicular to $A B$, therefore, $E N$ is the height of triangles $A D E$ and $B D E$.
$\therefore \quad \operatorname{ar}(\triangle A D)^{2} \frac{1}{2}$ (base \times height)

and

$$
\begin{aligned}
& \Rightarrow \quad \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)}=\frac{\frac{1}{2}(A D \times E N)}{\frac{1}{2}(D B \times E N)} \\
& \Rightarrow \quad \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)}=\frac{A D}{D B}
\end{aligned}
$$

Similarly, $\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle D E C)}=\frac{\frac{1}{2}(A E \times D M)}{\frac{1}{2}(E C \times D M)}=\frac{A E}{E C}$
Note that $\triangle B D E$ and $\triangle D E C$ are on the same base $D E$ and between the same parallels $B C$ and $D E$.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle B D E)=\operatorname{ar}(\triangle D E C) \tag{5}
\end{equation*}
$$

From (4) and (5), we have

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)}=\frac{A E}{E C} \tag{6}
\end{equation*}
$$

Again from (3) and (6), we have

Hence,

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Hence, $\quad \overline{\boldsymbol{D B}}=\frac{\boldsymbol{A} \boldsymbol{E}}{\boldsymbol{E} \boldsymbol{C}}$.
Prove that in a right angle triangle, the square of the hypotenuse is equal to the sum of the squares of the other tyo sides.

Solution. Given : A right triangle $A B C$, right angled at B.

To prove: $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+$ (Perpendicular) 2 i.e., $A C^{2}=A B^{2}+B C^{2}$
$B D \perp A C$
Construction : Draw $B D \perp A C$
Proof: $\triangle A D B \sim \triangle A B C /$
-IIf a perpendicular is drawn from the vertex of the right angle of a right/triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each ather.]

Also, $\triangle B D C \quad \triangle A B C$
$S S^{\circ} \quad \frac{C D}{B C}=\frac{B C}{A C}$

$$
\begin{equation*}
C D . A C=B C^{2} \tag{2}
\end{equation*}
$$

[Sides are proportional]
[Same reasoning as above]
[Sides are proportional]

Adding (1) and (2), we have
$A D-4 C+C D \cdot A C=A B^{2}+B C^{2}$
$\Rightarrow(A D+C D) A C=A B^{2}+B C^{2}$
$\Rightarrow \quad A C \cdot A C=A B^{2}+B C^{2}$
Hence, $\quad A C^{2}=A B^{2}+B C^{2}$

$$
A C^{2}=A B^{2}+B C^{2}
$$

