CCE SAMPLE QUESTION PAPER

FIRST TERM (SA-I)
MATHEMATICS

Tineallowed:3 to 31/2Howis
 Maximum Mex \% 8 80

General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into foursections $A B, C$ and D. Section A comprises of 10 questions of 1 mark each, Section B comprises 0.8 questions. of 2 marks each, Section C comprises of 10 questions of 10 ants each and Section D comprises of 6 questions of 4 marks each.
Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 8 questions of four marks each. You have to attempt only one of the alternatives in all buch questions.
(v) Use of calculators is not permitted.

Question numbers 1 to 10 are of one moft each.

1. If $0^{\circ}<x<90^{\circ}$ and $2 \sin ^{2} x$ - $\frac{1}{2}$, then the alue of x is
(a) 15°
(c) 45°

Solution. Choice (b) is correct.
(b) 30°
$-2 \sin ^{2} x=\frac{1}{2}$
(d) 60°

2. The value of $\operatorname{cosec}^{2} 30^{\circ} \sin ^{2} 45^{\circ}-\sec ^{2} 60^{\circ}$ is
(a) -1
(c) -2

Sblution. Choice (c) is correct.
$=\frac{\operatorname{cosec}^{2} 30^{\circ}-2^{2} 45^{\circ}-\sec ^{2} 60^{\circ}}{=(2)}$
. (v2)
$\left[\because \sin x>0\right.$ for $\left.0^{\circ}<x<90^{\circ}\right]$
(b) 0
(d) 2

$$
\text { (d) } 2
$$

.
m
$\left[\because \operatorname{cosec} 30^{\circ}=2, \sin 45^{\circ}=\frac{1}{\sqrt{2}}\right.$ and $\left.\sec 60^{\circ}=2\right]$

$$
\begin{aligned}
& =\frac{4}{2}-4 \\
& =2-4 \\
& =-2
\end{aligned}
$$

3. If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, then the value of A is
(a) 24°
(b) 12°
(c) 36°
(d) 48°

Solution. Choice (c) is correct.
Given, $\quad \tan 2 A=\cot \left(A-18^{\circ}\right)$
$\Rightarrow \quad \cot \left(90^{\circ}-2 A\right)=\cot \left(A-18^{\circ}\right)$
$\Rightarrow \quad 90^{\circ}-2 A \div A-18^{\circ}$
$\Rightarrow \quad 90^{\circ}+18^{\circ}=2 A+A$
$\Rightarrow \quad 108^{\circ}=3 A$
$\Rightarrow \quad A=\mathbf{3 6}^{\circ}$
4. If $\sec x+\tan x=p$, then $\sec x$ is equal to
(a) $\frac{p^{2}-1}{p}$
(b) $\frac{p^{2}-1}{2 p}$
(c) $\frac{p^{2}+1}{p}$

Solution. Choice (d) is correct.
Given,

$$
\sec x+\tan x=p
$$

(d)

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{\sec x+\tan x}=\frac{1}{p} \\
& \Rightarrow \frac{\sec x-\tan x}{(\sec x-\tan x)(\sec x+\tan x)}=\frac{1}{p} \\
& \Rightarrow \quad \frac{\sec x-\tan x}{\sec ^{2} x-\tan ^{2} x}=\frac{1}{p} \\
& \left.\Rightarrow \quad \frac{\sec x-\tan x}{2}=\frac{1}{p}\right) \\
& \Rightarrow \quad \\
& \text { Adding (1) and (2), we gen }
\end{aligned}
$$

$\left(\sec x+\tan x+(x-\tan x)=p+\frac{1}{p}\right.$

5. The decimal expansion of $\frac{98}{125}$ will terminate after how many places of decimal ? \downarrow
(b) 2
(c) 3 .
(d) 4

Solution. Choice (c) is correct.

$$
\frac{98}{125}=\frac{98 \times 8}{125 \times 8}=\frac{784}{1000}=0.784
$$

Thus, the decimal expansion of $\frac{98}{125}$ will terminate after 3 places of decimal
6. The largest number that will divide 398,436 and 542 leaving remainders 7,11 and 15 respectively is
(a) 11
(b) 17
(c) 34
(d) 51

- Solution. Choice (b) is correct.

It is given that on dividing 398, 436 and 542 by the largest required number, the remainders are 7, 11 and 15 respectively. This means that

$398-7=391,436-11=425$ and $542-15=527$ are exactly divisible by the required largest number.

Apply Euclid's division lemma to the numbers 527 and 425, me get

$$
\begin{aligned}
& 527=425 \times 1+102 \\
& 425=102 \times 4+17 \\
& 102=17 \times 6+0
\end{aligned}
$$

Clearly, HCF of 527 and 435 is 17.
Again, apply Euclid's division lemma to the numbers 291 and 17, we get

$$
391=23 \times 17+0
$$

Thus, HCF of 391 and 17 is 17 .
Hence, HCF of 391,425 and 527 in 17 .
7. If $x=a, y=b$ is the solution of the equations $x+y=50$ and $4 x+5 y=225$, then the values of a and b are respectively
(a) 10 and 40
(b) 25 and 25
(e) 23 and 27
(d) 20 and 30

Solution. Choice (b) in correct.
Since $x=a$ and $y=b$ is solution of the equations, therefore
and
$4 a+5 b=225$
From (1), $\alpha=50$

,
Substituting $a=50-$ in (2), we get

Substituting $b=25$ in (1), we get

$$
a=50-25=25
$$

Hence the values of a and b are 25 and 25 respectively.
8. In the given data:

Classes	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-205$
Frequency	4	5	13	20	14	7	4

The difference between the upper limit of the median class and the lower limit of the modal class is
(a) 0
(b) 10
(c) 20
(d) 30

Solution. Choice (c) is correct.

Classes	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$
Frequency	4	5	13	20	14	7
Cumulative Frequency	4	9	22	42	56	43

Here $n=67$ and $\frac{n}{2}=\frac{67}{2}=33.5$
Now, $125-145$ is the class whose cumulative frequency 42 isjust preater than $\frac{n}{2}=33.5$
Thus, 125-145 is the median class. The upper limit of the medianctess is 145.
Since the maximum frequency is 20 , therefore the modid (class is $125-145$. Thus, the lower limit of the modal class 125-145 is 125 .

Hence, the difference between the upper limit of medianclass, ie., 145 and the lower limit of the modal class, i.e., 125 is $\mathbf{2 0}(=145-125)$.
9. In figure, the graph of a polynomial p(y) is shoyn. The number of zeroes of $p(x)$ is
(a) 4
(c) 2

Solution. Choice (n) is sorrect.
The number ormees is 4 as the graph intersects the x-axis in four points, viz., $-1,0,1,2$.
10. In figue $\triangle A B G, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B G$. If $A B=6 \mathrm{gm}_{\mathrm{g}}, D B=9 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, then $A C$ is equal to

(a) 10 cm
(b) 20 cm
(c) 15 cm
(d) 30 cm

Solution. Choice (b) is correct.
In figure, $D E \| B C$
\therefore By BPT, we have

Section B:

Question numbers 11 to 18 carry 2 marks each.

11. Express 3825 as the product of prime factor.

Solution. We have

$$
\begin{aligned}
3825 & =5 \times 765 \\
& =5 \times 5 \times 153 \\
& =5 \times 5 \times 3 \times 51 \\
& =5 \times 5 \times 3 \times 3 \times 17 \\
& =\mathbf{3}^{2} \times \mathbf{5}^{2} \times 17
\end{aligned}
$$

12. If α and β are the zeroes of the quadratic polynomial $p(x)=x^{2}-a x+b$, then find the value of $\alpha^{2}+\beta^{2}$.

Solution. Since α and β are the zeroes $o f$ fhe quadratic polynomial $p(x)$, therefore,

$$
\alpha+\beta=-\left(\frac{-a}{1}\right) \not \subset a
$$

$$
\alpha \beta=\frac{b}{1}
$$

Now, $\alpha^{2}+\beta^{2}=$
\Rightarrow

$$
\begin{aligned}
& \left.\alpha^{2}+\beta^{2}=\alpha+\beta\right)^{2}-2 \\
& \alpha^{2}+\beta^{2}=(a)^{2}
\end{aligned}
$$

$\Rightarrow \quad \alpha^{2}+\beta^{2}-\alpha^{2}-2 b$
13. For what valie of ' k ' will the following pair of linear equations have infinitely many solutions

$$
\begin{aligned}
k x+3 y & =k-3 \\
12 x+k y & =k .
\end{aligned}
$$

Spution. The given pair of linear equations can be written as
$\begin{aligned} & k x+3 y-(k-3)=0 \\ & 124+k y-k=0 \\ & a_{1}\end{aligned}$
Heres, $\frac{a_{1}}{a_{2}}=\frac{k}{12}, \frac{b_{1}}{b_{2}}=\frac{3}{k}, \frac{c_{1}}{c_{2}}=\frac{-(k-3)}{-k}=\frac{k-3}{k}$

$$
\begin{aligned}
& \frac{A D}{D B}=\frac{A E}{E C} \\
& \Rightarrow \quad \frac{A D}{D B}=\frac{A E}{A C-A E} \\
& \Rightarrow \quad \frac{6}{9}=\frac{8}{A C-8} \\
& \Rightarrow \quad 6 A C-48=72 \\
& \Rightarrow \quad 6 A C=120 \\
& \Rightarrow \quad A C=20 \mathrm{~cm} \text {. }
\end{aligned}
$$

For a pair of linear equations to have infinitely many solutions :

$$
\begin{array}{ll}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\Rightarrow & \frac{k}{12}=\frac{3}{k}=\frac{k-3}{k}
\end{array}
$$

Consider, $\quad \frac{k}{12}=\frac{3}{k}$
$\Rightarrow \quad k^{2}=36$
$\Rightarrow \quad k= \pm 6$
Again, consider, $\frac{3}{k}=\frac{k-3}{k}$

$$
\begin{array}{rlrl}
\Rightarrow & 3 k & =k^{2}-3 k \\
\Rightarrow & 6 k & =k^{2} \\
\Rightarrow & 6 k-k^{2} & =0 \\
\Rightarrow & k(6-k) & =0 \\
\Rightarrow & & k & =0 \text { or } k=6
\end{array}
$$

Thus, the value of k, that satisfies both the solutions is $k=6$. Por this value, the pair of linear equations has infinitely many solutions.
14. Prove that :

$$
\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}+\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}
$$

Solution. We have
L.H.S. $=\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}+\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}$

$[\because \sqrt{a+b} \times \sqrt{a-b}=a-b]$

$$
\begin{aligned}
& =2 \sec A \\
& =\text { R.H.S. }
\end{aligned}
$$

If $A B C$ is a right angle triangle, right-angled at C. If $\angle A=30^{\circ}$ and $A B=50$ units, find the remaining two sides and $\angle B$ of $\triangle A B C$.

Solution. We have

$$
\begin{aligned}
& & \angle A+\angle B+\angle C & =180^{\circ} \\
\Rightarrow & & 30^{\circ}+\angle B+90^{\circ} & =180^{\circ} \\
\Rightarrow & & \angle B+120^{\circ} & =180^{\circ} \\
\Rightarrow & & \angle B & =180^{\circ}-120^{\circ} \\
\Rightarrow & & \angle B & =60^{\circ} .
\end{aligned}
$$

Now,

$$
\sin 30^{\circ}=\frac{B C}{A B}
$$

$$
\Rightarrow \quad \frac{1}{2}=\frac{B C}{50}
$$

$$
\Rightarrow \quad B C=\frac{50}{2}=25 \text { units }
$$

and

$$
\cos 30^{\circ}=\frac{A C}{A B}
$$

$$
\Rightarrow \quad \frac{\sqrt{3}}{2}=\frac{A C}{50}
$$

$$
\Rightarrow \quad A C=\frac{50 \sqrt{3}}{2}=25 \sqrt{3}
$$

Hence, $A C=25 \sqrt{3}$ units, $B C=25$ units and $\angle B=60^{\circ}$.

15. Prove that the area of an equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

Solution. Let $A B C D$.be a square and $B C E$ and $A C F$ are two equilateral triangles described on its side $B C$ and its diagonal $A C$ respégtively.

Since we have to prove that

Let the side of the square be de, then
and

[All equilateral triangles are similar as each angle is of 60°]
$\therefore \frac{\operatorname{area}(\triangle B C E)}{\operatorname{area}(\triangle A C F)}=\frac{B C^{2}}{A C^{2}}$ $\left[\begin{array}{l}\text { The ratio of the areas of two similar triangles is equal } \\ \text { to the square of the ratio of their corresponding sides }\end{array}\right]$

$$
\begin{aligned}
& =\frac{a^{2}}{(\sqrt{2} a)^{2}} . \\
& =\frac{a^{2}}{2 a^{2}}
\end{aligned}
$$

Hence, area $(\triangle B C E)=\frac{1}{2} \times$ area $(\triangle A C F)$
[using (1)]

$$
\Rightarrow \frac{\operatorname{area}(\triangle \dot{B C E})}{\operatorname{area} \cdot(\triangle A C F)}=\frac{1}{2}
$$

16. A life insurance agent found the following data for ditribution of ages of 100 policy holders, when the policies are given only to persons having age 18 years but less than 60 years.

Age (in years)	0-20	20-25	25-30	30-35	35-40	$(40-45) 45)-50$	50-55	55-60
No. of policy holders	2	4	18	21			6	2

Write the above distribution as less than tye cumnative frequency distribution. Solution. Cumulative Frequency pistribution

Age (in years)	
Less than 20	
Less than 25	
Less than 30	
Less than 35	No. of golicy holders (cf)
Less than 40	2
Less than 45	
Less/itan 50	
Less than 55	$64(2+4)$
Less than 60	$45(24+21)$

17. Find the modal maiks of the following distribution of marks obtained by 70 students.

Marks obtained	-10	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of students	\mathbf{z}	18	30	$\mathbf{4 5}$	$\mathbf{4 0}$	15	10	$\mathbf{7}$

Soluthor. Sinsethe class $30-40$ has the maximum frequency, therefore $30-40$ is the modal class.
$\therefore=30, h=10, f_{1}=45, f_{0}=30, f_{2}=40$
Osing the formula:

$$
\partial_{\text {Mode }}=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h
$$

$$
\begin{aligned}
& =30+\frac{45-30}{2 \times 45-30-40} \times 10 \\
& =30+\frac{15}{90-70} \times 10 \\
& =30+\frac{15}{20} \times 10 \\
& =30+7.5 \\
& =37.5
\end{aligned}
$$

Hence the modal marks $=\mathbf{3 7 . 5}$.

18. A vertical pillar $A B$ is bent at C at height of 2.4 metres and its vpper end B. touches the ground at a distance of 1.8 metres from the end A on the ground. Find the height of the pillar $A B$.

Solution. $A B$ is the pillar. At the point C it is bent so that its pper end touphes the ground at D, such that

$$
A D=1.8 \text { metres }
$$

Also

$$
A C=2.4 \text { metres }
$$

\therefore From right-angled triangle $C A D$,

$$
\begin{aligned}
C D^{2} & =A C^{2}+A D^{2} \\
& =(2.4)^{2}+(1.8)^{2} \\
& =5.76+3.24=9 \\
\Rightarrow \quad C D & =\sqrt{9}=3 \\
\therefore \quad A B & =A C+C B=A C+C D \\
& =2.4+3 \\
& =5.4 \text { metres. }
\end{aligned}
$$

Question numbers 19 to 28 carry 3 marks each.
19. Show that $n^{2}-1$ is divisible 8 , if n is an odd positive integer.

Solution. We know that any odd positive integer is of the form $4 m+1$ or $4 m+3$ for some integer m.

When $n=4 m+1$, 圤en

$$
\begin{gathered}
n^{2}-1=\left(4 m+y^{2}-1\right) \\
8\left(16 m^{2}+8 m+1\right)-1 \\
=1 m m^{2}+8 m \\
8 m(2)
\end{gathered}
$$

$\Rightarrow n^{2}-7$ (is divisible by 8
When $n=4 m+3$, then

Hences $y^{2}-1$ is divisible by 8 .
20. Prove that $\sqrt{5}$ is an irrational number.

Solution. Let us assume', to the contrary, that $\sqrt{5}$ is rational.
That is, we can find integers a and $b(\neq 0)$ such that

$$
\sqrt{5}=\frac{a}{b}
$$

Suppose a and b have a common factor other than 1, then we can divide by dise common factor, and assume that a and b are coprime.

So, $\quad b \sqrt{5}=a$
Squaring on both sides, and rearranging, we get

$$
5 b^{2}=a^{2} \Rightarrow 5 \text { divides } a^{2} \Rightarrow 5 \text { divides } a
$$

Let $\alpha=5 m$, where m is an integer.
Substituting $a=5 m$ in $5 b^{2}=a^{2}$, we get

$$
5 b^{2}=25 m^{2} \Rightarrow b^{2}=5 m^{2}
$$

$\Rightarrow 5$ divides b^{2} and so 5 divides b.
Therefore, a and b have at least 5 as a common factor and the conckusion contradicts the hypothesis that a and b have no common factors other than/ .

This contradiction has arisen because of our incorrect assumption that $\sqrt{5}$ is rational.
So, we conclude that $\sqrt{5}$ is irrational.
Show that $5+3 \sqrt{2}$ is an irrational number
Solution. Let us assume, to contrary, that $5+3$ is rational.
That is, we can find coprime a and b (B) Such that)

$$
5+3 \sqrt{2}=\frac{a}{b}
$$

Therefore, $3 \sqrt{2}=\frac{a}{b}-5$

Rearranging this equation, we get
$\stackrel{9}{\Rightarrow}$

Since a and b 登e ingers, $\frac{a-5 b}{3 b}$ is rational and so $\sqrt{2}$ is rational.
But this c ontradict the fact that $\sqrt{2}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $5+3 \sqrt{2}$ is rational.
So, conetzde that $5+3 \sqrt{2}$ is irrational.
27. Aand Bare friends and their ages differ by 2 years. A's father D is twice as old as A and B istwice as old as his sister C. The age of D and C differ by 40 years. Find the ages of A and B.

Solution. Let the ages of A and B be x and y years respectively, then

$$
\begin{equation*}
x-y= \pm 2 \tag{1}
\end{equation*}
$$

D 's age $=$ Twice the age of $A=2 x$ years

It is given that B is twice as old as his sister C.
$\Rightarrow \quad C_{\text {s }}$ age $=$ Half the age of $B=\frac{y}{2}$ years
Then, $\quad 2 x-\frac{y}{2}=40$
When $x-y=2 \ldots$ (ia) and $2 x-\frac{y}{2}=40$
Multiplying (2) by 2, we get

$$
4 x-y=80
$$

Subtracting ($1 a$) from (3), we get

$$
\begin{aligned}
& & (4 x-y)-(x-y) & =80-2 \\
\Rightarrow & & 3 x & =78 \\
\Rightarrow & & x & =26
\end{aligned}
$$

Substituting $x=26$ in ($1 a$), we get

$$
26-y=2 \Rightarrow y=26-2=24
$$

When $x-y=-2 \ldots$ (ib) and $2 x-\frac{y}{2}=40$.
Multiplying (2) by 2 , we get

Subtracting (16) from (3), we get

$$
\begin{array}{rlrl}
& & (4 x-y)-(x-y) & =80+2 \\
\Rightarrow & 3 x & =82 \\
\Rightarrow & x & =\frac{82}{3}=27 \frac{1}{3}
\end{array}
$$

Substituting $x=27 \frac{1}{3}$ in (lb), we get

Hence, A 's age $=26$ years and B 's age $=24$ years or

As age $=27 \frac{1}{3}$ years and $B ' s$ age $-29 \frac{1}{3}$ years.
Or

Solve the following pair of equations :
$\int \frac{5}{x-1}+\frac{1}{y-2}=2$

$$
\frac{6}{x-1}-\frac{3}{y-2}=1
$$

Solution. We have :

$$
\begin{aligned}
& \frac{5}{x-1}+\frac{1}{y-2}=2 \\
& \frac{6}{x-1}-\frac{3}{y-2}=1
\end{aligned}
$$

Multiplying equation (1) by 3 and adding in equation (2), we get

$$
\left(\frac{15}{x-1}+\frac{3}{y-2}\right)+\left(\frac{6}{x-1}-\frac{3}{y-2}\right)=6+1
$$

$$
\Rightarrow
$$

$$
\frac{21}{x-1}=7 \Rightarrow x-1=21 \div 7 \Rightarrow x \Rightarrow 1=3 \Rightarrow x=4
$$

Substituting $x=4$ in equation (2), we get

$$
\begin{aligned}
& & \frac{6}{4-1}-\frac{3}{y-2} & =1 \\
& \Rightarrow & 2-\frac{3}{y-2} & =1 \\
& \Rightarrow & \frac{3}{y-2} & =2-1 \\
& \Rightarrow & y-2 & =3 \div 1=3
\end{aligned}
$$

Hence, $x=4, y=5$ is the solution of y given pair f equations.
22. If α and β are zeroes of a quadratic polynomial, such that $\alpha+\beta=24$ and $\alpha-\beta=8$, find a quadratic polynomial having α and β as its zeroes.

Solution. Given, $\alpha+\beta=24$
and

$$
\begin{equation*}
\alpha-\beta=8 \tag{1}
\end{equation*}
$$

Adding (1) and (2), we get/
$\begin{array}{ll}\Rightarrow & 2 \alpha=32 \\ \Rightarrow & \alpha=16\end{array}$
Substituting $\alpha=16$ (1), me get

$$
\begin{aligned}
& 16+\beta=24-16=8 \\
\Rightarrow & =24-16=8
\end{aligned}
$$

Let S and denote sum and product of a required quadratic polynomial $p(x)$ then, $S=\alpha y \beta=16+8=24$ and $P=\alpha \beta=(16)(8)=128$
$p(x)=k\left[x^{2}-S x+P\right]$, where k is non-zero constant
or $p(x)=k\left[x^{2}-24 x+128\right]$, where k is non-zero constant.
23. If $x=a \operatorname{see} \theta+b \tan \theta$ and $y=a \tan \theta+b \sec \theta$, prove that $x^{2}-y^{2}=a^{2}-b^{2}$.

Solution. We have
$x)=a \sec \theta+b \tan \theta$
$y=a \tan \theta+b \sec \theta$

Squaring (1) and (2), we get
$x^{2}=a^{2} \sec ^{2} \theta+b^{2} \tan ^{2} \theta+2 a b \sec \theta \tan \theta$
and $\quad y^{2}=a^{2} \tan ^{2} \theta+b^{2} \sec ^{2} \theta+2 a b \sec \theta \tan \theta$
Subtracting (4) from (3), we get

$$
\begin{equation*}
x^{2}-y^{2}=\left(a^{2} \sec ^{2} \theta+b^{2} \tan ^{2} \theta+2 a b \sec \theta \tan \theta\right)-\left(a^{2} \tan ^{2} \theta+b^{2} \sec ^{2} \theta+2 a b \sec \theta \tan \theta\right) \tag{4}
\end{equation*}
$$

$\Rightarrow \quad x^{2}-y^{2}=a^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)+b^{2}\left(\tan ^{2} \theta-\sec ^{2} \theta\right)$
$\Rightarrow x^{2}-y^{2}=a^{2}\left(1+\tan ^{2} \theta-\tan ^{2} \theta\right)+b^{2}\left(\tan ^{2} \theta-1-\tan ^{2} \theta\right)$
$\Rightarrow \quad x^{2}-y^{2}=a^{2}(1)+b^{2}(-1)$
$\Rightarrow x^{2}-y^{2}=a^{2}-b^{2}$
24. Prove that :

$$
\frac{\cos A}{1-\sin A}+\frac{\sin A}{1-\cos A}+1=\frac{\sin A \cos A}{(1-\sin A)(1-\cos A)}
$$

Solution. We have,

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cos A}{1-\sin A}+\frac{\sin A}{1-\cos A}+1 \\
& =\frac{\cos A(1-\cos A)+\sin A(1-\sin A)+(1-\sin A)(1-\cos A)}{(1-\sin A)(1-\cos A)} \\
& =\frac{\cos A-\cos ^{2} A+\sin A-\sin ^{2} A+1-\sin A+\cos A+\sin A \cos A}{(1-\sin A)(1-g) A)} \\
& =\frac{(\cos A+\sin A)-\left(\cos ^{2} A+\sin ^{2} A x(1-1 \cos A+\sin A)+\sin A \cos A\right.}{(1-\sin A(1-\cos A)} \\
& =\frac{(\cos A+\sin A)-1+1-(\cos A+\sin A)+\sin A \cos A}{(1-\sin A)(1-\cos A)} \\
& =\frac{\sin A \cos A}{(1-\sin A)(1-\cos A)} \\
& =\text { R.H.S. }
\end{aligned}
$$

25. If the diagonals of a quadrilateral divide each other proportionally, prove that it is a trapezium.

Solution. Given : A quad inateral $A B C D$ whose diagonals $A C$ and $B D$ intersect each other at O such that

$$
\frac{A O}{O C}=\frac{B \not Q}{O D}
$$

To prove : Quadrilaterat $A B C D$ is a trapezium, i.e.; $A B \| D C$.
Constructig $:$ raw $O E \| B A$, meeting $A D$ in E.
Proof: In $A B D$, heve
(2)

Thus, in $\triangle D C A, O$ and E are points on $A C$ and $A D$ respectively such that

$$
\frac{A E}{E D}=\frac{A O}{O C}
$$

Therefore, by the converse of BPT, we have

$$
E O \| D C
$$

But $\quad O E \| B A$
$\therefore \quad D C \| B A$
$\Rightarrow \quad A B \| D C$
Hence, $A B C D$ is a trapezium.

26. Calculate area ($\triangle P Q R$) from figure :

Solution. $P Q R$ is a xight-angled triangle, M is any point inside $\triangle P Q R$ and $P M R$ is a rightangled triangle.

$$
\begin{aligned}
Q R & =26 \mathrm{~cm} \\
P M & =6 \mathrm{~cm} \\
R M & =8 \mathrm{~cm}
\end{aligned}
$$

In right-angled triangle $P M R$, we have

$$
P R^{2}=P M^{2}+R M^{2}
$$

$\Rightarrow \quad P R^{2}=(6)^{2}+(8)^{2}$
$\Rightarrow \quad P R^{2}=36+64$
$\Rightarrow \quad P R^{2}=100$
$\Rightarrow \quad P R=10 \mathrm{~cm}$
[using Pythagoras Theorem]

In right-angled $\triangle P Q R$, we have

	$Q R^{2}=P Q^{2}+P R^{2}$
\Rightarrow	$P Q^{2}=Q R^{2}-P P^{2}$
\Rightarrow	$P Q^{2}=(26)^{2}-(1 Q)^{2}$
\Rightarrow	$P Q^{2}=676$
\Rightarrow	$P Q^{2}=576$
\Rightarrow	$P Q=0$

[using Pythagoras Theorem]

Now, area $(\triangle P Q R)=\frac{1}{2} P R \times P Q$

$$
10 \times 24) \mathrm{cm}^{2}
$$

$120 \mathrm{~cm}^{2}$.
27. In a retail market, fruit vendor were selling mangoes kept in packing boxes. These boxes contained varying numbers of mangoes. The following was the distribution of mangoes according to the number of boxes.

Number of mangoes	Number of boxes
$50-52$	15
$53-55$	110
$56-58$	135
$59-61$	25
$62-64$	

Find the mean number of mangoes kept in a packing bgx, using step-deviation method.

Solution. Let the assumed mean be $a=57$ and $h=3$.

Number of mangoes	No. of boxes (f_{i})	Class-mark (x_{i})	$u_{i}=\frac{x-57}{3 /}$	$f_{i} u_{i}$
50-52	15	51	-2	-30
53-55	110	54 今	- 1	- 110
56-58	135	$57 \sim$	0	0
59-61	115	60	1	115
62-64	25	68	2	50
Total	$n=\Sigma f_{i}=400$	-		$\Sigma f_{i} u_{i}=25$
Using the formula :				

Hence, the mean number of mangoes in a box $=\mathbf{5 7 . 1 9}$.
Or
The foll distribution shows the daily pocket allowance of children of a locality. Themean sooket allowance is $₹ 18$. Find the value of p.

Dailp pocket allowarnce (in ₹)							
Number of childven	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
	7	6	9	13	p	5	4

Solution.

Daily pocket allowance (in ₹)	No. of children $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$f_{i} x_{i}$
11-13	7	12	84
13-15	6	14	$84 /$
15-17	9	16	144
17-19	13	18	234
19-21	p	20	20p
21-23	5	22	10
23-25	4	24	0
Total	$n=\Sigma f_{i}=44+p$		Stix $x_{2}=754$
Using the formula :			
$\text { Mean }=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$			
$\Rightarrow \quad$ (given) $18=\frac{752+20 p}{}$			
$\Rightarrow 18(44+p)=752+20 p$		$\Rightarrow \quad 44+p$	
$\Rightarrow 792+18 p=752+20 p$			
$\Rightarrow 20 p-18 p=792-752$			
$\Rightarrow \quad p=$	$\Rightarrow \quad 2 p=40$		

28. Find the median of the following data

| Classes | $0-20$ | $20-40$ | $40-60$ | $60-80$ | $80-100$ | $100-120$ | $120-140$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 6 | 8 | 10 | 12 | 6 | 5 | 3 |

Solution. The cumulative frequency distribution table with the given frequency becomes :

N/ $/ 6,60-80$.is the class whose cumulative frequency 36 is greater than $\frac{n}{2}=25$. Therefore, $60-80$ is the median class. Thus, the lower limit (l) of the median class is 60 .

Using the formula :

$$
\begin{aligned}
\text { Median } & =l+\frac{\frac{n}{2}-c f}{f} \times h \\
& =60+\frac{25-24}{12} \times 20 \\
& =60+\frac{20}{12} \\
& =60+\frac{5}{3} \\
& =60+1.67 \\
& =61.67
\end{aligned}
$$

Section D
Question numbers 29 to 34 carry 4 marks each.
29. Find the zeroes of the polynomial $f(x)=x^{3}-5 x^{2}-16 x+80$, if its two zeroes are equal in magnitude but opposite in sign.

Solution. Let α, β, γ be the zeroes of the give \uparrow odynomial $f(x)$, then

$$
\begin{align*}
\alpha+\beta+\gamma & =-\left(\frac{-5}{1}\right)=5 \tag{1}\\
\alpha \beta+\alpha \gamma+\beta \gamma & =-\frac{16}{1}=-16 \tag{2}\\
\alpha \beta \gamma & =-\left(\frac{80}{1}\right)=80 \tag{3}
\end{align*}
$$

It is given that two zeroes are equal in magnitude but opposite in sign, therefore .
Let $\beta=-\alpha$, then
$\quad \alpha+\beta=0$
From (1) and (4), we get

From (3) and (5), we get $\alpha \beta(5)=-80$
$\Rightarrow \quad \alpha \beta=-16$
Substitutiy $\beta=\alpha$ in (6), we get

Hence, the zeroes are $4,-4,5$.
sio. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Solution. Given : $\triangle A B C$ and $\triangle P Q R$ such that $\triangle A B C \sim \triangle P Q R$.

To prove $: \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$.
Construction : Draw $A D \perp B C$ and $P S \perp Q R$.
$\operatorname{ar}(\triangle P Q R) \quad Q R \times P S$
Now, in $\triangle A D B$ and $\triangle P S Q$, we have

$$
\begin{gathered}
\angle B=\angle Q \\
\angle A D B=\angle P S Q
\end{gathered}
$$

$[$ As $\triangle A B C \sim \triangle P Q R]$
.$\left[\right.$ Each $\left.=90^{\circ}\right]$
$[$ As $\triangle A B C \sim \triangle P Q R]$
.$\left[\right.$ Each $\left.=90^{\circ}\right]$
Proof: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P S}$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C \times A D}{Q R \times P S}$

$$
\text { 3rd } \angle B A D=3 \text { rd } \angle Q P S
$$

Thus, $\triangle A D B$ and $\triangle P S Q$ are equiangular ann hence, the are similar.
Consequently, $\frac{A D}{P S}=\frac{A B}{P Q}$
[If Δ s are similar, the ratio of their corresponding sides is same]
But

$$
\frac{A B}{P Q}=\frac{B C}{Q R}
$$

$$
\Rightarrow \quad \quad \frac{A D}{P S}=\frac{B C}{Q B}
$$

...(3) [using (2)]
Now, from (1) and (3), whet

$$
\begin{array}{ll}
& \left.\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}-\frac{B C}{Q R} \times \frac{A D}{P S}\right) \\
\Rightarrow \quad & \frac{\operatorname{ar}(\triangle A B Q}{\operatorname{ar}(A P Q R)}=\frac{B Q}{Q R} \times \frac{B C}{Q R} \\
\Rightarrow \quad & \operatorname{ar}(\triangle A B C) \\
\operatorname{ar}(\triangle P Q R) & B C^{2} \\
Q R^{2}
\end{array}
$$

\qquad

Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$

Or

Prove that in aright angle triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

Solution. Given : A right triangle $A B C$, right angled at B.
To prove : $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
ie., $\quad A C^{2}=A B^{2}+B C^{2}$
Construction : Draw $B D \perp A C$.
Proof : $\triangle A D B \sim \triangle A B C$.
[If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.]

So,

$$
\frac{A D}{A B}=\frac{A B}{A C}
$$

$\Rightarrow \quad A D . A C=A B^{2}$
Also, $\triangle B D C \sim \triangle A B C$
So,

$$
\frac{C D}{B C}=\frac{B C}{A C}
$$

$$
\begin{equation*}
\Rightarrow \quad C D \cdot A C=B C^{2} \tag{2}
\end{equation*}
$$

Adding (1) and (2), we have $A D A C+C D . A C=A B^{2}+B C^{2}$
$\Rightarrow(A D+C D) A C=A B^{2}+B C^{2}$
$\Rightarrow \quad A C \cdot A C=A B^{2}+B C^{2}$
Hence,

$$
A C^{2}=A B^{2}+B C^{2}
$$

31. Evaluate :

$$
\frac{\sec ^{2} 54^{\circ}-\cot ^{2} 36^{\circ}}{\operatorname{cosec}^{2} 57^{\circ}-\tan ^{2} 33}+2 \sin ^{2} 38^{\circ} \cdot \sec ^{2} 52^{\circ}-\sin ^{2} 45^{\circ}
$$

Solution. We have

$$
\frac{\sec ^{2} 54^{\circ}-\cot ^{2} 36^{\circ}}{\operatorname{cosec}^{2} 57^{\circ}-\tan ^{2} 33^{\circ}+2 \sin ^{2} 38^{\circ} \sec ^{2} 52^{\circ}-\sin ^{2} 45^{\circ}, 0}
$$

$$
=\frac{\sec ^{2}\left(90^{\circ}-36^{\circ}\right)-\cot ^{2} 36^{\circ}}{\operatorname{cosec}\left(9 g^{\circ}-33^{\circ}\right)-\tan ^{2} 33^{\circ}}+2 \sin ^{2} 38^{\circ} \sec ^{2}\left(90^{\circ}-38^{\circ}\right)-\sin ^{2} 45^{\circ}
$$

$$
\begin{aligned}
& =\frac{1}{1}+2 \cdot(1)-\left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =1+2-\frac{1}{2} \\
& =\frac{5}{2}
\end{aligned}
$$

Or

Prove that :

$$
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta
$$

Solution. We have
L.H.S. $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$

$$
=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}
$$

$$
=\frac{(\sin \theta / \cos \theta)}{(\sin \theta-\cos \theta) / \sin \theta}+\frac{(\cos \theta / \sin \theta}{(\cos \theta-\sin (\theta) / \cos }
$$

$$
=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{\theta} \theta}{\sin \theta}
$$

$$
=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}
$$

$$
=\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{2} \theta}{(\cos \theta}-\frac{\cos \theta \theta}{\sin \theta}\right]
$$

32. Prove that :

$$
\tan ^{2} A-\tan ^{2} B=\frac{\cos ^{2} B-\cos ^{2} A}{\cos ^{2} B \cos ^{2} A}=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A \cos ^{2} B}
$$

Solution. We have,
L.H.S. $=\tan ^{2} A-\tan ^{2} B$

$$
\begin{aligned}
& =\frac{\sin ^{2} A}{\cos ^{2} A}-\frac{\sin ^{2} B}{\cos ^{2} B} \\
& =\frac{\sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B}{\cos ^{2} A \cos ^{2} B} \\
& =\frac{\left(1-\cos ^{2} A\right) \cos ^{2} B-\cos ^{2} A\left(1-\cos ^{2} B\right)}{\cos ^{2} A \cos ^{2} B} \\
& =\frac{\cos ^{2} B-\cos ^{2} A \cos ^{2} B-\cos ^{2} A+\cos ^{2} A}{\cos ^{2} A \cos ^{2} B} \\
& =\frac{\cos ^{2} B-\cos ^{2} B}{\cos ^{2} A \cos ^{2} B} \\
& =\frac{\left(1-\sin ^{2} B\right)-\left(1-\sin ^{2} A\right)}{\cos ^{2} A \cos ^{2} B} \\
& =\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A \cos ^{2} B} \\
& =\text { R.H.S. }
\end{aligned}
$$

33. During the medica/check-up of 35 students of a class, their weights were recorded as follows :

- Dran a less than type ogive for the given data. Hence, obtain the median weight from the grapl and verify the result by using the formula.
sdution We consider the cumulative frequency, distribution given in the table of given question and draw its ogive (of the less than type).

Here 38, 40, 42, 52 are the upper limits of the respective class intervals less than 38, $38-40,40-42, \ldots \ldots \ldots \ldots \ldots, 50-52$. To represent the data in the table graphically, we mark the upper limits of class intervals on the horizontal axis (x-axis) and their corresponding cumulative frequencies on the vertical axis (y-axis), choosing a convenient scale. Now plot the points corresponding to the ordered pairs given by (upper limit, corresponding cumulative frequency), i.e., $(38,0),(40,3),(42,5),(44,9),(46,14),(48,28),(50,32),(52,35)$ on a graph paper and join them by a free hand smooth curve. The curve we get is called a cumulative frequency ourve or an ogive (of the less than type) (see figure).

Locate $\frac{n}{2}=\frac{35}{2}=17.5$ on the x-axis (fge figure). From this point, draw a line parallel to x-axis cutting the curve at point. From this point, draw a perpendicular on the x-axis. The point of intersection of thin perpendicular with the x-axis determines the median weight of the data (see figure).

To calculate the nedianweight, we need to find the class intervals and their corresponding frequencies. Obserpe that from the given distribution, we find that there are no students with weight less than 08e., the frequency of class interval below 38 is 0 . Now, there are 3 students with weight less than 40 and 0 student with weight less than 38 . Therefore, the number of students with neight in the interval $38-40$ is $3-0=3$. Similarly, the number of students with weight in the inter ral $40-42$ is $5-3=2$.

Simif erly, the frequency of $42-44$ is $9-5=4$, for $44-46$, it is $14-9=5$ and so on. So, the frequency distribution table with the given cumulative frequencies becomes :

Table

Class Intervals	Frequency	Cumulative Frequency
\cdot Below 38	0	0
$38-40$	3	3
$40-42$	2	
$42-44$	4	14
$44-46$	5	28
$46-48$	14	
$48-50$	4	
$50-52$	3	
$\therefore \quad n$		

Here, $\frac{n}{2}=\frac{35}{2}=17.5$. Now $46-48$ is the class whose cumulative frequencsys 28 is greater than $\frac{n}{2}$, i.e., 17.5 .
$\therefore 46-48$ is the median class.
From the table; $f=14, c f=14, h=2$
Using the formula :

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =46+\left(\frac{17.5-14}{14}\right) \\
& =46+\frac{3.5}{14} \times 2 \\
& =46+\frac{1}{2} \\
& =46+0.5 \\
& =46
\end{aligned}
$$

So, about half the sthdents have weight less than 46.5 kg , and the other half have weight more than 46.5 kg .
34. Represent thefollowing system of linear equations graphically. From the graph, find the points where the lines intersect x-axis :

$$
2 x-x=2,4 x-y=8 .
$$

- Solution? hate

- x	0	1	3
A- -	-2	0	4
	A	B	C

and and	$\begin{aligned} 4 x-y & =8 \\ y & =4 x-8 \\ \text { Table of } y & =4 x-8 \end{aligned}$			
	x	1	2	3
	y	-4	0	4
		D	E	C

Take $X O X^{\prime}$ and $Y O Y^{\prime}$ as the axes of coordinates. Plotting the points $A(0,-2), B(1,0), C(3,4)$ and joining them by a line, we get a line ' l ' which is the graph of $2 x-y=2$.

Further, plotting the points $D(1,-4), E(2,0), C(3,4)$ and joining them by a line, we get a line ' m ' which is the graph of $4 x-y=8$.

From the graph of the two equations, we find that the two lines l and m intersect each other at the point $C(3,4)$.

$\therefore \quad x=3, y=4$ is the solution.

The first line $2 x-y=2$ meets the x-axis at the point $\boldsymbol{B}(1,0)$. The second line $4 x-y=8$ moets the x-axis at the point $\boldsymbol{E}(2,0)$.

