CCE SAMPLE QUESTION PAPER

FIRST TERM (SA-I)
 MATHEMATICS

(With Solutions)
CLASS X

General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of $\&$ questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.

(iii) Question numbers 1 to 10 in Section A are multiple choice duestions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section 4

Question numbers 1 to 10 are of one mar each.

1. If a rational number x is expressed as $x=\frac{p}{q}$, where p, q are integers, $q \neq 0$ and
p, q have no common factor (except 1), then the decimal expansion of x is terminating if and only if \boldsymbol{q} has a prime factorization of the form :
(a) $2^{m} \cdot 5^{n}$
(b) $2^{m} \cdot 3^{n}$
(c) $2^{m} \cdot 7^{n}$
(d) $5^{m} \cdot 3^{n}$
where m and n are nom-negative infegers.
Solution. Choice (a) is correct
The prime factorization of q is q f the form $2^{m} \cdot 5^{n}$, where m and n are non-negative integers, then a rational nymber $x=\frac{2}{q}$ bas a terminating decimal.
2. If $\cot \theta+\frac{1}{\cot \theta}=2$, then the value of $\cot ^{2} \theta+\frac{1}{\cot ^{2} \theta}$ is
(a) 8
(c) 2
2
(b) 4
(d) -4

Solution. Choice (c) is correct.
Given, E0t $\theta+\frac{1}{\cot \theta}=2$

$$
\begin{array}{ll}
\Rightarrow & \cot ^{2} \theta+\frac{1}{\cot ^{2} \theta}+2 \cot \theta \cdot \frac{1}{\cot \theta}=4 \\
\Rightarrow & \cot ^{2} \theta+\frac{1}{\cot ^{2} \theta}+2=4 \\
\Rightarrow & \cot ^{2} \theta+\frac{1}{\cot ^{2} \theta}=4-2 \\
\Rightarrow & \cot ^{2} \theta+\frac{1}{\cot ^{2} \theta}=2
\end{array}
$$

$$
\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]
$$

3. In the given figure, the graph of some polynomial $p(x)$ is given. The number of zeroes of the polynomial $p(x)$ is

(a) 1
(c) 3

Solution. Choice (b) is correct.
The number of zeroes are 2, as the graph intersects the x-axis in two points, viz., $O(0,0)$ and $A(2,0)$.
4. In figure, $A B \| Q R$. The length of $P A$ is

(a) 3.2 cm
(c) 4.8 cm
(b) 4.2 cm
(d) 3.6 cm

Solution. Choice (a) is correct.
In $\triangle P Q R$, we have

$$
\therefore \frac{P A}{A Q}=\frac{P B}{B R}
$$

[By BPT]

$$
\begin{array}{lc}
\Rightarrow & \frac{A Q}{P A}=\frac{B R}{P B} \\
\Rightarrow & 1+\frac{A Q}{P A}=1+\frac{B R}{P B} \\
\Rightarrow & \frac{P A+A Q}{P A}=\frac{P B+B R}{P B} \\
\Rightarrow & P Q \\
\Rightarrow & P A \\
\Rightarrow & \frac{P A}{P Q}=\frac{P B}{P R}
\end{array}
$$

Thus, in $\triangle{ }^{\prime} P A B$ and $P Q R$, we have

$$
\begin{array}{ll}
& \\
\text { and } & \frac{P A}{P Q}=\frac{P B}{P R} \\
& \angle P=\angle P
\end{array}
$$

So, by SAS-criterion of similarity of Δ^{\prime} s, we have $\triangle P A B \sim \triangle P Q R$
$\Rightarrow \quad \frac{P A}{P Q}=\frac{P B}{P R}=\frac{A B}{Q R}$
$\Rightarrow \quad \frac{P A}{P Q}=\frac{A B}{Q R}$
$\Rightarrow \quad \begin{gathered}P A \\ 8\end{gathered}-\begin{gathered}4 \\ 10\end{gathered}$
[Taking reciprocal of both sides]
$\Rightarrow \quad P A=\frac{8 \times 4}{10}=\frac{32}{10}=32 \mathrm{~cm}$
5. If $A=45^{\circ}$ and $B=30^{\circ}$, then the value $\sin A \cos B+\cos A \sin B$ is
(a) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$

(b) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(c) $\frac{\sqrt{3}+1}{2 \sqrt{3}}$
(d) $\frac{\sqrt{3}-1}{2 \sqrt{3}}$

Solution. Choiee (a) is correct.
$\sin A \cos B / 4 \cos A \sin B$
$=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$

6. Tine value of $(\sec \theta+\tan \theta)(1-\sin \theta)$ is
(a) $\sec \theta$
(b) $\operatorname{cosec} \theta$
(a) $\sin \theta$
(d) $\cos \theta^{\circ}$

Solution. Choice (d) is correct.
$(\sec \theta+\tan \theta)(1-\sin \theta)$

$$
\begin{aligned}
& =\left(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}\right)(1-\sin \theta) \\
& =\left(\frac{1+\sin \theta}{\cos \theta}\right)(1-\sin \theta) \\
& =\frac{1-\sin ^{2} \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta}{\cos \theta} \\
& =\cos \theta
\end{aligned}
$$

7. If the HCF of 210 and 55 is expressible in the form $210 \times 5+55 \times p$, then the value of p is
(a) -17
(c) -19
(b) -18
(d) $-20 \wedge$

Solution. Choice (c) is correct.
Given integers are 210 and 55.
Apply Euclid's division lemma to 210 and 55, weget

$$
\begin{equation*}
210=55 \times 3+45 \tag{1}
\end{equation*}
$$

Since the remainder $45 \neq 0$, therefore, appl f Euclid's division lemma to 55 and 45 , we get

$$
\begin{equation*}
55=45 \times 1+10 \tag{2}
\end{equation*}
$$

Since the remainder $10 \neq 0$, therefore, apply Euclids division lemma to 45 and 10, we get

$$
\begin{equation*}
45=10 \times 4+5 \tag{3}
\end{equation*}
$$

Since the remainder $5 \neq 0$, therefore, apply Eicclid's division lemma to 10 and 5 .

$$
10=5 \times 2+0
$$

The remainder at this stage is $0 . S o$, the divisor at this stage or the remainder at the previous stage i.e., 5 is the HCE/of 210 and 55.

From (3), we get.

$$
\begin{align*}
5 & =45-10 \times 4 \tag{2}\\
& =45-(55-45 \times 1) / 4 \\
& =45-55 \times 4+45 / \times 4 \\
& =45 \times 5-55 \times 4 \\
& =(210-55 \times 3) \times 5-55 \times 4 \\
& =210 \times 5-55 \times 15-55 \times 4
\end{align*}
$$

[using (1)]
Note: $\begin{aligned} \quad=210 \times 5 & =55 \times 19 \\ 5=H C F & =210^{\circ} \times 5+55 \times p \Rightarrow 55 \times p=5-210 \times 5\end{aligned}$
$\Rightarrow \quad 55 \times p=5-1050=-1045 \Rightarrow p=-1045 \div 55=-19$
8. f \bar{x} is the arithmetic mean of n observations $x_{1}, x_{2}, \ldots, x_{n}$, then the arithmetic mean $\partial \mathrm{f} a x_{1}, a x_{2}, \ldots, a x_{n}$ is
(a)

(b) $\frac{\bar{x}}{a}$
(c) $\frac{a}{\bar{x}}$.
(d) None of these

Solution. Choice (a) is correct.
Mean of n observations $x_{1}, x_{2}, \ldots, x_{n}$ is

$$
\text { (given) } \bar{x}=\frac{x_{1}+x_{2}+\ldots \ldots+x_{n}}{n}
$$

$\Rightarrow x_{1}+x_{2}+\ldots+x_{n}=n \bar{x}$
Mean of n observations $a x_{1}, a x_{2}, \ldots, a x_{n}$ is

$$
\begin{aligned}
& =\frac{a x_{1}+a x_{2}+\ldots .+a x_{n}}{n} \\
& =\frac{a\left(x_{1}+x_{2}+\ldots .+x_{n}\right)}{n} \\
& =\frac{a(n \bar{x})}{n} \\
& =a \bar{x}
\end{aligned}
$$

9. If the pair of linear equations

$$
3 x+2 y=1
$$

$$
(2 k+1) x+(k+2) y=k-1
$$

has infinitely many solution, then the value of is
(a) 2
(c) 4

Solution. Choice (c) is correct.
Here, $\frac{a_{1}}{a_{2}}=\frac{3}{2 k+1}, \frac{b_{1}}{b_{2}}=\frac{2}{k+2}, \frac{c_{1}}{c_{2}}=\frac{-1}{-(k-1)}=\frac{1}{k-1}$
For infinitely many solutions, we must have

Hence, the given system of linear equations have an infinite number of solutions when kr.
10. If $\cos x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$, then the value of x is
(a) 30°
(b) 15°
(c) 45°
(d) 60°

Solution. Choice (α) is correct.
$\cos x=\cos 60^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}$
$\cos x=\frac{1}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{1}{2}$

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
& \Rightarrow \quad \frac{3}{2 k+1}=\frac{2}{k+2}=\frac{1}{k-1} \\
& \Rightarrow \quad \frac{3}{2 k+1}=\frac{2}{k+2} \text { and } \frac{2}{k+2}=\frac{1}{k-1} \\
& \Rightarrow \quad 3 k+6=4 k+2 \text { and } \\
& 2 k-2=k+2 \\
& \Rightarrow \quad 4 k-3 k=6-2 \text { and } 2 k-k=2+2 \\
& \Rightarrow \quad k=4 \quad \text { and } \quad k=4
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \cos x=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \\
\Rightarrow & \cos x=2 \times \frac{\sqrt{3}}{4} \\
\Rightarrow & \cos x=\frac{\sqrt{3}}{2}=\cos 30^{\circ} \\
\Rightarrow & \boldsymbol{x}=\mathbf{3 0}^{\circ}
\end{array}
$$

Section 'B'

Question numbers 11 to 18 carry 2 marks each.
11. Explain $5 \times 4 \times 3 \times 2 \times 1+3$ is a composite number.

Solution. We have
$5 \times 4 \times 3 \times 2 \times 1+3$

$$
\begin{aligned}
& =(5 \times 4 \times 1 \times 2 \times 1+1) \times 3 \\
& =(40+1) \times 3 \\
& =41 \times 3
\end{aligned}
$$

$\Rightarrow 5 \times 4 \times 3 \times 2 \times 1+3=3 \times 41$ is a composite number as product of prime occur.
12. If α and β are the zeroes of the quadratic polynomial $p(x)=a x^{2}+b x+c$, then evaluate $: \frac{\alpha}{\beta}+\frac{\beta}{\alpha}$.

Solution. Since α and β are the zeroes of the polynomial $p(x)=a x^{2}+b x+c$, therefore

$$
\begin{aligned}
\alpha+\beta & =-\left(\frac{b}{a}\right)=-\frac{b}{a} \\
\alpha \beta & =\frac{c}{a}
\end{aligned}
$$

Now, $\quad \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$

$$
=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}
$$

$$
\Delta=\frac{\left(\frac{b}{a}\right)^{2}-2\left(\frac{c}{a}\right)}{\sqrt{a}}
$$

$$
=\frac{b^{2}-2 a c}{a c}
$$

13. Solve for x and y

$$
\left.\begin{array}{l}
\frac{5}{x}+\frac{1}{y}=2 \\
\frac{6}{x}-\frac{3}{y}=1
\end{array}\right\} x \neq 0, y \neq 0
$$

Solution. The given system of linear equations are
and

$$
\begin{aligned}
& \frac{5}{x}+\frac{1}{y}=2 \\
& \frac{6}{x}-\frac{3}{y}=1
\end{aligned}
$$

Multiplying (1) by 3, we obtain the new equation as

$$
\frac{15}{x}+\frac{3}{y}=6
$$

Adding (2) and (3), we get

$$
\begin{aligned}
& \quad\left(\frac{6}{x}+\frac{15}{x}\right)+\left(-\frac{3}{y}+\frac{3}{y}\right)=1+6 \\
& \Rightarrow \quad\left(\frac{21}{x}+0=7\right. \\
& \Rightarrow \quad \quad \frac{21}{x}=7 \Rightarrow x=\frac{21}{1}=3
\end{aligned}
$$

Putting $x=3$ in (1), we get

$\Rightarrow \quad$| $\frac{5}{3}+\frac{1}{y}=2$ |
| ---: |
| \Rightarrow |
| \Rightarrow |
| |
| \Rightarrow |

Hence, the solutionis $x-3$ and $y=3$.
14. Prove that: $\sec ^{4} \theta-\sec ^{2} \theta=\tan ^{4} \dot{\theta}+\tan ^{2} \theta$.

Solution. We ave
L. TAS. $=\sec ^{4} \theta-\sec ^{2} \theta$

Solution. We have

$$
\begin{array}{rlrl}
& & \sin (A+2 B) & =\frac{\sqrt{3}}{2} \\
\Rightarrow & & \sin (A+2 B) & =\sin 60^{\circ} \\
\Rightarrow & A+2 B & =60^{\circ} \\
\text { and } & & \cos (A+4 B) & =0 \\
\Rightarrow & \cos (A+4 B) & =\cos 90^{\circ} \\
\Rightarrow & & A+4 B & =90^{\circ}
\end{array}
$$

Subtracting (1) from (2), we get

$$
\begin{array}{rlrl}
& & (A+4 B)-(A+2 B) & =90^{\circ}-60^{\circ} \\
\Rightarrow & & B B & =30^{\circ} \\
\Rightarrow & B & =15^{\circ}
\end{array}
$$

Substituting $B=15^{\circ}$ in (1), we get

$$
\begin{array}{rlrl}
& & A+2 \times\left(15^{\circ}\right) & =60^{\circ} \\
\Rightarrow & A+30^{\circ} & =60^{\circ} \\
\Rightarrow & A & A 0^{\circ}-30^{\circ}=30^{\circ}
\end{array}
$$

Hence, $\boldsymbol{A}=\mathbf{3 0}{ }^{\circ}$ and $\boldsymbol{B}=15^{\circ}$.
15. In figure, $D E \| B C$ and $B D=C E$. Prove that $\triangle A B C$ is and isosceles triangle,

Solution. In $\triangle A B C$, we have $D E \| B C$

[By BPT]
[Adding 1 to both sides]

> [given]
[using $C E=B D$]
$\Rightarrow \triangle A B C_{i 8}$ an isosceles triangle.
16. In figure, $A D \perp B C$, if $\frac{B D}{D A}=\frac{D A}{D C}$, prove that $A B C$ is a right triangle.

Solution. In right triangles $A D B$ and $A D C$, we have

$$
A B^{2}=A D^{2}+B D^{2}
$$

(1) [Pythagoras Theorem]
and $A C^{2}=A D^{2}+D C^{2}$
Adding (1) and (2), we get

$$
\begin{aligned}
A B^{2}+A C^{2} & =\left(A D^{2}+B D^{2}\right)+\left(A D^{2}+D C^{2}\right) \\
& =2 A D^{2}+B D^{2}+D C^{2} \\
& =2 B D \cdot D C+B D^{2}+D C^{2} \\
& =(B D+D C)^{2} \\
& =B C^{2}
\end{aligned}
$$

Thus, in $\triangle A B C$, we have

$$
A B^{2}+A C^{2}=B C^{2}
$$

Hence, $\triangle A B C$ is a right triangle; right angled at A.
17. The following distribution gives the daily income of 100 workers of a factory.

Income $($ in $₹$)	$0-100$	100	200	200	300	$300-400$	$400-500$
$500-600$							
Number of workers	7	415	35	28	10	5	

Write the above distribution as more than type cumulative frequency distribution.

Solution. Cumulative frequency distribution table of more than type
$\left.\begin{array}{|c|c|l|l|}\hline \begin{array}{c}\text { Income } \\ \text { (in ₹) }\end{array} & \begin{array}{c}\text { No. of workers } \\ 0-100\end{array} & \text { (f) }\end{array}\right)$
18. If the made of the following distribution is 57.5 , find the value of x.

Classes	$\mathbf{3 0}-\mathbf{4 0}$	$\mathbf{4 0}-\mathbf{5 0}$	$\mathbf{5 0}-60$	$\mathbf{6 0}-\mathbf{7 0}$	$\mathbf{7 0}-\mathbf{8 0}$	$80-90$	$90-100$
Erequeng	6	10	16	x	$\mathbf{1 0}$	5	2

Solution. Since the mode is given as 57.5 , therefore the modal class is $50-60$ and the lower limit (l) is 50 .
$\therefore \quad l=50, h=10, f_{1}=16, f_{0}=10, f_{2}=x$
Using the formula :

$$
\begin{array}{rlrl}
& & \text { Mode } & =l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& & 57.5 & =50+\frac{16-10}{2 \times 16-10-x} \times 10 \\
\Rightarrow & & 57.5-50 & =\frac{6}{22-x} \times 10 \\
\Rightarrow & & 7.5=\frac{60}{22-x} \\
\Rightarrow & 7.5 \times(22-x) & =60 \\
\Rightarrow & 165-7.5 x & =60 \\
\Rightarrow & & 7.5 x=165-60 \\
\Rightarrow & & x=\frac{105}{7.5} \\
\Rightarrow & & x & =14 .
\end{array}
$$

Section C^{\prime}

Question numbers 19 to 28 carry 3 marks each.
19. Show that $2-\sqrt{3}$ is an irrational number.

Solution. Let us assume, to the contrary, that $2-\sqrt{3}$ is rational.
That is we can find co-prime a and $b(b \neq 0)$ such that

$$
\begin{array}{ll}
& 2-\sqrt{3}=\frac{a}{b} \\
\Rightarrow & a-\frac{a}{b}=\sqrt{3}
\end{array}
$$

Rearranging this equation, we have

$$
\sqrt{3}-2-\frac{a}{b}=\frac{2 b-a}{b}
$$

Since a and b are integers, $2-\frac{a}{b}$ is rational, and so $\sqrt{3}$ is rational.
But thin contradicts the fact that $\sqrt{3}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $2-\sqrt{3}$ is rational.
So, we conclude that $2-\sqrt{3}$ is irrational.
Prove that $\sqrt{3}$ is an irrational number.

Solution. Let us assume, to the contrary, that $\sqrt{3}$ is rational. Then

$$
\sqrt{3}=\frac{p}{q} \text {, where } p \text { and } q \text { are integers and } q \neq 0 .
$$

Suppose p and q have a common factor other than 1 , then we can divide by the common factor, to get

$$
\sqrt{3}=\frac{a}{b} \text {, where } a \text { and } b \text { are coprime. }
$$

So, $\quad \sqrt{3} b=a$
Squaring on both sides, and rearranging, we get $3 b^{2}=a^{2} \Rightarrow a^{2}$ is divisible by $3 \Rightarrow a$ is also divisible by α [If r (prime) divides a^{2}, then \Rightarrow divides a]
Let $a=3 m$, where m is an integer.
Substituting $a=3 m$ in $3 \dot{b}^{2}=a^{2}$, we get

$$
3 b^{2}=9 m^{2} \Rightarrow b^{2}=3 m^{2}
$$

This means that b^{2} is divisible by 3 , and so b is also divisibleby 3. Therefore, a and b have at least 3 as a common factor. But this contradicts the fact that α and b are coprime. This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is rational.

So, we conclude that $\sqrt{3}$ is irrational.
20. Use Euclid's division lemma to show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some intoger m.

Solution. Let x be any positive integer then it is of the form $3 q, 3 q+1$ or $3 q+2$.
When $x=3 q$, then by squaring, we have

$$
\left.x^{2}=(3 q)^{2}=9 q^{2}=3\left(3 q^{2}\right)=30 \text { where } m\right) 3 q^{2}
$$

When $x=3 q+1$, then by squaring, we have

$$
x^{2}=(3 q+1)^{2}=9 q^{2}+6 q(+1=3 q(3 q+2)+1=3 m+1, \text { where } m=q(3 q+2)
$$

When $\boldsymbol{x}=\mathbf{3 q}+2$, then by squaring, we have $/$

$$
\begin{aligned}
x^{2} & =(3 q+2)^{2}=9 q^{2}+12 q+4=\left(8 q^{2}+12 q+3\right)+1 \\
& =3\left(3 q^{2}+4 q+1\right)+1=3 m+1, \text { where } m=3 q^{2}+4 q+1 .
\end{aligned}
$$

Hence, the square of any positive integer, say x, is either of the form $3 m$ or $3 m+1$ for some integer m.
21. Solve the following pair of equations:

Multiplying equation (1) by 3 and subtracting from (2), we get

$$
\begin{aligned}
& \left(\frac{15}{x+y}+\frac{7}{x-y}\right)-\left(\frac{15}{x+y}-\frac{6}{x-y}\right)=10-(-3) \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

Adding equations (3) and (4), we get

$$
2 x=6 \Rightarrow x=3
$$

Substituting $x=3$ in (4), we get
$3+y=5 \Rightarrow y=2$
Hence, $\boldsymbol{x}=\mathbf{3 , y}=\mathbf{2}$ is the solution of the givenpair of equations.
Ram travels 760 km to his home, partly by train and partly by car. He takes 8 hours if he travels 160 km by train and the rest by the car. He takes 12 minutes more if he travels 240 km by train and the rest by car. Find the speed of the train and the car separately.

Solution. Let the speed of the train be $x \mathrm{~km} / \mathrm{h}$ and that of the car be $y \mathrm{~km} / \mathrm{h}$.
When Ram travels 160 km by train and rest by car
Time taken by Ram to travel 160 km by $\operatorname{train}=\frac{160}{x} \mathrm{~h}$
Time taken by Ram to travel (860-160) $=600 \mathrm{~km}$ by car $=\frac{600}{y} \mathrm{~h}$
\therefore Time taken by Ram to cover $760 \mathrm{~km}=\left(\frac{160}{x}+\frac{600}{y}\right) \mathrm{h}$
It is given that the total time taken is 8 hours.

When Ram travels 240 km by train and rest by car

Time taken by Ram to travel 240 km by train $=\frac{240}{x} \mathrm{~h}$

Time taken by Ram to travel $(760-240)=520 \mathrm{~km}$ by car $=\frac{520}{y} . \mathrm{h}$
\therefore Time taken by Ram to cover $760 \mathrm{~km}=\left(\frac{240}{x}+\frac{520}{y}\right) \mathrm{h}$
It is given that the Ram takes 8 hours 12 minutes for the journey.
$\therefore \quad \frac{240}{x}+\frac{520}{y}=8 \frac{12}{60}=8 \frac{1}{5}$
$\Rightarrow \quad \frac{240}{x}+\frac{520}{y}=\frac{41}{5}$
$\Rightarrow \quad \frac{30}{x}+\frac{65}{y}=\frac{41}{5 \times 8}=\frac{41}{40}$
Multiplying equation (1) by 3 and equation (2) by 2 , we get

$$
\frac{60}{x}+\frac{225}{y}=3
$$

and

$$
\frac{60}{x}+\frac{130}{y}=\frac{41}{20}
$$

Subtracting (4) from (3), we get

$$
\begin{aligned}
& \left(\frac{60}{x}+\frac{225}{y}\right)-\left(\frac{60}{x}+\frac{130}{y}\right)=3-\frac{41}{20} \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

Substituting $y=100$ 角 (3), we get)

$$
\begin{array}{ll}
\frac{60}{x}+\frac{225}{100}=3-\frac{225}{100} \\
\frac{60}{x}=\frac{300-225}{100} \\
x=\frac{60}{100} \\
&
\end{array}
$$

Hence, speed of train $=\mathbf{8 0} \mathbf{~ k m} / \mathrm{h}$ and speed of car $=\mathbf{1 0 0} \mathbf{~ k m} / \mathrm{h}$.
22. If α and β are the zeroes of the quadratic polynomial $p(x)=x^{2}-2 x+3$, find a quadratic polynomial whose roots are $\frac{\alpha_{i-1}}{\alpha+1}, \frac{\beta-1}{\beta+1}$.

Solution. Since α and β are the zeroes of a given quadratic polynomial $p(x)$, then

$$
\alpha+\beta=-\left(\frac{-2}{1}\right)=2
$$

and

$$
\alpha \beta=\frac{3}{1}=3
$$

Let S and P denote the sum and product of the roots $\frac{\alpha-1}{\alpha+1}$ and $\frac{\beta-1}{\beta+1}$, then

$$
\begin{array}{ll}
& S=\frac{\alpha-1}{\alpha+1}+\frac{\beta-1}{\beta+1} \\
\Rightarrow & S=\frac{(\alpha-1)(\beta+1)+(\alpha+1)(\beta-1)}{(\alpha+1)(\beta+1)} \\
\Rightarrow & S=\frac{(\alpha \beta+\alpha-\beta+1)+(\alpha \beta-\alpha+\beta-1)}{\alpha \beta+\alpha+\beta+1} \\
\Rightarrow & S=\frac{2 \alpha \beta}{\alpha \beta+(\alpha+\beta)+1} \\
\Rightarrow & S=\frac{2(3)}{3+2+1} \\
\Rightarrow & S=\frac{6}{6}=1 \\
\text { and } & P=\frac{\alpha-1}{\alpha+1} \times \frac{\beta-1}{\beta+1}
\end{array}
$$

$\left.\Rightarrow \quad P=\frac{\alpha \beta-\alpha-\alpha+1}{\alpha \beta+\alpha+\beta+1}\right\rangle$
$\Rightarrow \quad P=\frac{\alpha \beta-(\alpha+\beta)+1}{\alpha \beta+(\alpha+\beta)+1}$
$\Rightarrow \quad P=\frac{3-2+1}{3+2+1}$
$\Rightarrow \sim R=\frac{2}{6}=\frac{1}{3}$
\therefore Required quadratic polynomial is

$f(x)$	$=\left[x^{2}-S x+P\right]$
or $f(x)$	$=\left(x^{2}-x+\frac{1}{3}\right)$
or $f(x)$	$=k\left(3 x^{2}-3 x+1\right)$, where k is non-zero constant.

23. If $\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1$ and $\frac{x}{a} \sin \theta-\frac{y}{b} \cos \theta=-1$, prove that

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2
$$

Solution. We have

$$
\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta=1
$$

and

$$
\frac{x}{a} \sin \theta-\frac{y}{b} \cos \theta=-1
$$

Squaring and adding (1) and (2), we get
\qquad

$$
\cdot\left(\frac{x}{a} \cos \theta+\frac{y}{b} \sin \theta\right)^{2}+\left(\frac{x}{a} \sin \theta-\frac{y}{b} \cos . \theta\right)^{2}=1^{2}+(-1)
$$

$$
\Rightarrow\left(\frac{x^{2}}{a^{2}} \cos ^{2} \theta+\frac{y^{2}}{b^{2}} \sin ^{2} \theta+2 \frac{x y}{a b} \sin \theta \cos \theta\right)+\left(\frac{x^{2}}{a^{2}} \sin \left(\theta+\frac{y^{2}}{b^{2}} \cos ^{2} \theta-2 \frac{x y}{a b} \sin \theta \cos \theta\right)=2\right.
$$

$$
\Rightarrow \quad \frac{x^{2}}{a^{2}}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\frac{y^{2}}{b^{2}}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=2
$$

$$
\Rightarrow \quad \frac{x^{2}}{x^{2}}+\frac{y^{2}}{b^{2}}=2
$$

$$
\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
$$

24. Prove that

$$
(\tan A-\tan B)^{2}+(1+\tan A \tan B)^{2}=\sec ^{2} A \sec ^{2} B
$$

Solution. We have

```
L.H.S. \(=(\tan A-\tan B)^{2}+(1+\tan A \tan B)^{2}\)
    \(=\left(\tan ^{2} A+\tan ^{2} B-2 \tan A \tan B\right)+\left(1+\tan ^{2} A \tan ^{2} B+2 \tan A \tan B\right)\)
    \(=\tan ^{2} A-\tan ^{2} B+1+\tan ^{2} A \tan ^{2} B\)
    \(=\left(1+\tan ^{2} A\right)+\left(\tan ^{2} B+\tan ^{2} A \tan ^{2} B\right)\)
    \(=\left(1+\tan ^{2} A\right)+\tan ^{2} B\left(1+\tan ^{2} A\right)\)
    \(=\left(1+\tan ^{2} A\right)\left(1+\tan ^{2} B\right)\)
    \(=\sec ^{2} A \sec ^{2} / B\)
```

25. In figure, $\triangle A B C$ is right angled at C and $D E \perp A B$. Prove that $\triangle A B C \sim \triangle A D E$ and hence find the lengths of $A E$ and $D E$.

Solution. In $\triangle A B C$ and $\triangle A D E$, we have

$$
\begin{aligned}
& \angle A C B=\angle A E D \\
& \angle B A C=\angle D A E
\end{aligned}
$$

So, by AA-criterion of similarity of triangles, we have

$$
\triangle A B C \sim \triangle A D E
$$

$\Rightarrow \quad \frac{A B}{A D}=\frac{A C}{A E}=\frac{B C}{D E}$
In right triangle $A B C$, we have

$$
\begin{array}{ll}
& A B^{2}=A C^{2}+B C^{2} \\
\Rightarrow & A B^{2}=(A D+D C)^{2}+B C^{2} \\
\Rightarrow & A B^{2}=(3+2)^{2}+(12)^{2} \zeta \\
\Rightarrow & A B^{2}=25+.144=169 \mathrm{~cm}^{2} \\
\Rightarrow & A B=13 \mathrm{~cm}
\end{array}
$$

From (1), we have

$$
\begin{aligned}
& \quad \frac{A B}{A D}=\frac{A C}{A E} \\
\Rightarrow \quad & \frac{13}{3}=\frac{A D+D C}{A E} \Rightarrow \frac{13}{3}=\frac{3+2}{A E} \\
\Rightarrow \quad & A E=\frac{\mathbf{1 5}}{\mathbf{1 3}} \mathbf{~ m}
\end{aligned}
$$

Again, from (1), we have

$$
\begin{aligned}
& \frac{A B}{A D} & =\frac{B C}{D E} \\
\Rightarrow & \frac{13}{3} & =\frac{12}{D E} \\
\Rightarrow \quad & D E & =\frac{\mathbf{3 6}}{\mathbf{1 3}} \mathbf{~ c m} .
\end{aligned}
$$

26. In figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$.

Prove that $\frac{B E}{D E}=\frac{A C}{B C}$

Solution. In figure, $D B \perp B C, D E \perp A B$ and $A C \perp B C$.
Singe $D B$ and $A C$ both are perpendicular to $B C$, therefore $D B \| A C$.
$\angle D B E=\angle B A C$
Also $\angle D E B=\angle A C B$
...(1) [Alternate $\angle s$ as $D B \| A C]$
...(2) $\left[\right.$ Each $\left.=90^{\circ}\right]$

In $\triangle \mathrm{s} B E D$ and $A C B$, we have

$$
\angle D B E=\angle B A C
$$

and $\angle D E B=\angle A C B$
So, by AA-criterion of similarity of triangles, we have

$$
\triangle B E D \sim \triangle A C B
$$

$\Rightarrow \quad \frac{B E}{\boldsymbol{D E}}=\frac{\boldsymbol{A C}}{\boldsymbol{B C}}$.
27. The following table gives the daily income of 50 workers of a factory

Daily Income (in ₹)	$100-120$	$120-140$	$140-160$	$160-186$	$180-200$
Number of workers	12	14	8	6	10

Find the median of the above data.
Solution. The cumulative frequency distribution table with the given frequency becomes :

Daily Income (in $₹)$	No. of workers (f)	cymulative frequency $(c f)$
$100-120$	12	12
$120-140$	14	26
$140-160$	8	
$160-180$		6
$180-200$	10	40
Total	$M=\Sigma f_{i}=50$	50

Now, $120-140$ is the class whose cumulative frequency 26 is greater than $\frac{n}{2}=25$
Therefore, $120-140$ is the median class. Thus, the lower limit (l) of the median class is 120 . Using the formula :

$120+\frac{130}{7}$
$120+18.57$
138.57

Se, about half the workers have daily income less than ₹ 138.57 and other half have daily income more than ₹ 138.57.
28. The mean of the following frequency distribution is 62.8 . Find the value p.

Classes	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	5	8	p	12	7	8

Solution.

Classes	Frequency (f_{i})	Class-mark (x_{i})	府 $x_{i}>$
0-20	5	10	$50 \sim$
20-40	8	30	240
40-60	p	50	$\beta^{\circ} 0 p_{2}$
60-80	12	70	- 840
80-100	-7	90	6%
100-120	8	110	880
Total	$n=\Sigma f_{i}=40+p$		$\Sigma \mathrm{If}_{2} y_{i}=2640+50 \mathrm{p}$

Using the formula:

$$
\begin{aligned}
& \text { Mean }=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
& \Rightarrow \quad \text { (given) } 62.8=\frac{2640+50 p}{40+p} \\
& \Rightarrow \quad 62.8(40+p)=2640+50 p \\
& \Rightarrow \quad 2512+62.8 p=2640+50 p \\
& \Rightarrow \quad 62.8 p-50 p=2640-2512 \\
& \Rightarrow \quad 12.8 p=128 \\
& \Rightarrow \quad p=\frac{128}{12.8} \\
& \Rightarrow \quad p=10
\end{aligned}
$$

Find the mean of the following frequency distribution, using step-deviation method.

Classes	$25-29$	30	-34	$35-39$	$40-44$	$45-49$	$50-54$
Frequency	14	22	16	6	5	3	4

Solution. Let the assumed mean be $a=42, h=5$.

Classes	Frequency $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-42}{5}$	$f_{i} u_{i}$
$25-29$	14	27	-3	-42
$30-34$	22	32	-2	-44
$35-39$	16	37	-1	-16
$40-44$	6	42	0	0
$45-49$	5	47	1	5
$50-54$	3	52	2	6
$55-59$	4	.57	3	12
Total	$n=\Sigma f_{i}=70$.		$\Sigma f_{i} u_{i}=-79$

Using the formula :

$$
\begin{aligned}
\text { Mean } & =a+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h \\
& =42+\frac{(-79)}{70} \times 5 \\
& =42-\frac{79}{14} \\
& =42-5.64 \\
& =36.36
\end{aligned}
$$

Section ${ }^{\text {D }}$

Question numbers 29 to 34 carry 4 marks each.
29. Compute the missing frequencies, x and y in the fonowing data if the mean is $166 \frac{9}{26}$ and the sum of the observations is 52.

Classes	Arequendy
140-150	5
150-160	,
160-170	- $/ 20$
170-180	- \dot{y}
180-190	-6
190-200)
Total	52

Now, also calculate the median.
Solution. Since the classes are of equalsize, it will be more convenient to use the Stepdeviation Method.

Classes	Frequence $\left(f_{i}\right)$	Class thark	$u_{i}=\frac{x_{i}-165}{10}$	$f_{i} u_{i}$	cf
$140-150$	5	145	-2	-10	
$150-160$	x	155	-1	$-x$	$5+x=15$
$160-170$	20	$165=a$	0	0	$25+x=35$
$170-180$	y	175	1	y	$25+x+y=44$
$180-190$	6	185	2	12	$31+x+y=50$
$190-200$	2	195	3	6	$33+x+y=52$
Total	$n=8 f_{i}$			$\Sigma f_{i} u_{i}$	
	$=33+x+y$			$=8-x+y$	

Assumed Méan (a) = 16.5, $h=10$.
We have $n=52=$ Total frequency $=\Sigma f_{i}$
$\begin{aligned} \Rightarrow \int 3+x+y & =52 \\ \Rightarrow & x+y \\ \Rightarrow & =52-33 \\ x+y & =19\end{aligned}$

By Step-deviation Method, we have

$$
\begin{array}{rlrl}
& \bar{X} & =a+h \times \frac{1}{n} \Sigma f_{i} u_{i} \\
& & \\
\Rightarrow \quad \text { (given) } 166 \frac{9}{26} & =165+10 \times \frac{1}{52} \times(8-x+y) \\
\Rightarrow & \frac{4325}{26} & =165+\frac{10(8-x+y)}{52} \\
\Rightarrow \quad & \frac{4325}{26}-165 & =\frac{10(8-x+y)}{52} \\
\Rightarrow \quad & \frac{4325-4290}{26} & =\frac{10(8-x+y)}{52} \\
\Rightarrow \quad & & \frac{35}{26} & =\frac{10(8-x+y)}{52} \\
\Rightarrow \quad & \quad 35 & =5(8-x+y) \\
\Rightarrow \quad & & x-y & =8-x+y \tag{2}
\end{array}
$$

Adding (1) and (2), we get

$$
2 x=20 \Rightarrow x=10
$$

Substituting $x=10$ in (1), we get

$$
y=19-10=9
$$

Hence, the missing frequencies corresponding to the classes 150-160 and 170-180 are 10 and 9 respectively.

Here, $\frac{n}{2}=\frac{52}{2}=26$
Now, $160-170$ is the class whose cumulative frequency 35 is greater than $\frac{n}{2}=26$.
$\therefore 160-170$ is median class. Thus, the lower limit of median class is 160 .
From the table, $f=20, c f=15, h=10$
Using the formula :

Median

$$
160+\frac{26-15}{20} \times 10
$$

$180+\frac{11}{2}$
$=160+5.5$
165.5.
30. Solve the following system of linear equations graphically :

$$
\begin{gathered}
2 x+y=8 \\
3 x-2 y=12
\end{gathered}
$$

Also find the coordinates of the points where the lines meet the x-axis.

Solution. We have

$\begin{aligned} 2 x+y & =8 \\ y & =8\end{aligned}$				
Table of $y=8-2 x$				
x	1	2	3	4
y	6	4	2	0
	A	B	C	D.

$\quad \begin{array}{r}\text { and } \\ \Rightarrow \\ ,\end{array}$
Table of $y=8-2 x$

Take $X O X^{\prime}$ and YOY' as the axes of coordinate. Plotting the points $A(1,6), B(2,4), C(3,2)$ and $D(4,0)$ and joining them by a line, we get a line ' l ' which is the graph of $2 x+y=8$.

Further, plotting the points $D(4,0), E(2,-3), F(0,-6)$ and $G(6,3)$ and joining them by a line, we get a line ' m ' which is the graph of $3 x-2 y=12$.

From the graph of the two equations, we find that the two ines and mintersect each other at the qoint $D(4,0)$.

$\therefore \boldsymbol{x}=\mathbf{4}, \boldsymbol{y}=\mathbf{0}$ is the solution.

The first line $2 x+y=8$ meets the x-axis at $x=4$. the second n he $3 x-2 y=12$ meets the x-axis at $x=4$. From the graph, we observe that both the lines meet the x-axis at $\boldsymbol{D}(\mathbf{4}, \mathbf{0})$.

Solution. We have
$\cot 12^{\circ} \cot 38^{\circ} \cot 52^{\circ} \cot 60^{\circ} \cot 78^{\circ}+\tan \left(55^{\circ}-\theta\right)-\cot \left(35^{\circ}+\theta\right)+\cos \left(40^{\circ}+\theta\right)-\sin \left(50^{\circ}-\theta\right)$
$=\cot 12^{\circ} \cot 38^{\circ} \cot \left(90^{\circ}-38^{\circ}\right) \cot 60^{\circ} \cot \left(90^{\circ}-12^{\circ}\right)+\tan \left[90^{\circ}-\left(35^{\circ}+\theta\right)\right]-\cot \left(35^{\circ}+\theta\right)$

$$
+\cos \left(40^{\circ}+\theta\right)-\sin \left[90^{\circ}-\left(40^{\circ}+\theta\right)\right]
$$

$=\cot 12^{\circ} \cot 38^{\circ} \tan 38^{\circ} \cot 60^{\circ} \tan 12^{\circ}+\cot \left(35^{\circ}+\theta\right)-\cot \left(35^{\circ}+\theta\right)+\cos \left(40^{\circ}+\theta\right)$

$$
-\cos \left(40^{\circ}+\theta\right)
$$

$\left[\because \cot \left(90^{\circ}-\theta\right)=\tan \theta, \tan \left(90^{\circ}-\theta\right)=\cot \theta, \sin \left(90^{\circ}-\theta\right)=\cos \theta\right]$
$=\left(\cot 12^{\circ} \tan 12^{\circ}\right)\left(\cot 38^{\circ} \tan 38^{\circ}\right) \cot 60^{\circ}+0+0$
$=(1)(1)(\sqrt{3})+0+0$
$=\sqrt{3}$

Or

If $7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$, find the value of $\sec \theta+\operatorname{cosec} \theta$.
Solution. Given,
$7 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$\Rightarrow \quad 4 \sin ^{2} \theta+3 \sin ^{2} \theta+3 \cos ^{2} \theta=4$
$\Rightarrow \quad 4 \sin ^{2} \theta+3\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4$
$\Rightarrow \quad 4 \sin ^{2} \theta+3=4$
$\Rightarrow \quad 4 \sin ^{2} \theta=4-3=1$
$\Rightarrow \quad \sin ^{2} \theta=\frac{1}{4}$
$\begin{array}{lr}\Rightarrow & \sin \theta=\frac{1}{2} \\ \Rightarrow & \frac{1}{\sin \theta}=2 \\ \Rightarrow & \operatorname{cosec} \theta=2 \\ \text { We know that, } \cos ^{2} \theta=1-\sin ^{2} \theta=1-\frac{1}{4}=\frac{3}{4}\end{array}$
[Taking positive sign]

$$
\Rightarrow
$$

$$
\begin{aligned}
& =\frac{2}{\sqrt{3}}+2 \\
& =\frac{2+(2 \sqrt{3}}{\sqrt{3}}=\frac{2(1)+\sqrt{3})}{\sqrt{3}}=\frac{2 \sqrt{3}(1+\sqrt{3})}{3} \\
& \left.=\frac{2(\sqrt{3}+3)}{3}\right)=\frac{2(1.732+3)}{3}=\frac{2(4.732)}{3} \\
& =2(1.577)
\end{aligned}
$$

32. Prove that the ratio of the areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

Solution. Given : $\triangle A B C$ and $\triangle P Q R$ such that $\triangle A B C \sim \triangle P Q R$.
To prove : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$
Construction : Draw $A D \perp B C$ and $P S \perp Q R$.

Proof: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P S}$

$$
\begin{equation*}
\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C \times A D}{Q R \times P S} \tag{1}
\end{equation*}
$$

Now, in $\triangle A D B$ and $\triangle P S Q$, we have

$$
\begin{aligned}
\angle B & =\angle Q \\
\angle A D B & =\angle P S Q
\end{aligned}
$$

[As $\triangle A B C \sim \triangle P Q R$]

$$
3 \mathrm{rd} \angle B A D=3 \mathrm{rd} \angle Q P S
$$

$\left[\right.$ Each $\left.=90^{\circ}\right]$
Thus, $\triangle A D B$ and $\triangle P S Q$ are equiangular and hence, they are similar.
Consequently, $\frac{A D}{P S}=\frac{A B}{P Q}$
[if A's are similar, the ratio of their corresponding sides is same]
But

$\Rightarrow \quad \frac{A D}{D S}=\frac{B C}{Q R}$
Now, from (10 and (3), we get

As $\triangle A B C \sim \triangle P Q R$, therefore

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P} \tag{5}
\end{equation*}
$$

Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$

> Or

State and prove the converse of the following theorem :
In a right triangle, the square of the hypotenuse is equal to the sum of the other two sides.

Solution. Statement : In a triangle, if the square of one side is equal to the sum of the squares of the other two sides; then the angle opposite the first side is a right angle.

Given : A triangle $A B C$ such that: $A C^{2}=A B^{2}+B C^{2}$
To prove : $\triangle A B C$ is a right-angled at B, ie., $\angle B=90^{\circ}$.

Construction : Construct a $\triangle P Q R$ such that $\angle Q=90^{\circ}$ and $P Q=A B$ and $Q R=B C$. [see figure]

Proof: In $\triangle P Q R$, as $\angle Q=90^{\circ}$, we dave

$$
\begin{equation*}
P R^{2}=P Q^{2}+Q R^{2} \tag{1}
\end{equation*}
$$

[By Pythagoras Theorem]
$\Rightarrow \quad P R^{2}=A B^{2}+B C^{2}$
But $\quad A C^{2}=A B^{2}+B C^{2}$
[As $P Q=A B$ and $Q R=B C]$
From (1) and (2), we have

$$
\begin{equation*}
P R^{2}=A C^{2} \tag{2}
\end{equation*}
$$

$\Rightarrow \quad P R=A C$
Now in $\triangle A B C$ and $\triangle P Q R$, we have

[using (3)]
[SSS congruency]
[PCT]
33. A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water.

Solution. Let the speed of the boat in still water be $x \mathrm{~km} / \mathrm{h}$ and speed of the stream be $y \mathrm{~km} / \mathrm{h}$.

The speed of the boat downstream $=(x+y) \mathrm{km} / \mathrm{h}$.
The speed of the boat upstream $=(x-y) \mathrm{km} / \mathrm{h}$.
In the first case, when the boat goes 30 km upstream and 44 km downstream.
Time taken in going 30 km upstream + Time taken in going 44 km downstream

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow
\end{aligned} \quad \frac{30}{x-y}+\frac{44}{x+y}=100
$$

In the second case, when the boat goes 40 km upstream and 55 km downstream.
Time taken in going 40 km upstream + Time taken in going 55 km downstream
$=13$ hours (given)

$$
\begin{aligned}
& \Rightarrow \quad \frac{40}{x-y}+\frac{55}{x+y}=13 \\
& \Rightarrow \quad \frac{40}{x-y}+\frac{55}{x+y}-13=0
\end{aligned}
$$

Using Cross-multiplication method, we get

$$
\frac{\frac{1}{x-y}}{44-10}=\frac{\frac{1}{x+y}}{-10 \quad 30}=\frac{1}{35 \quad 44}
$$

$$
\Rightarrow \quad \frac{\frac{1}{x-y}}{-572+550}=\frac{\frac{1}{x+y}}{-400+390}=\frac{1}{1650-1760}
$$

$$
\left.\Rightarrow \quad \frac{\frac{1}{x-y}}{-22}=\frac{\frac{1}{x+y}}{-10}=\frac{1}{-110}\right\rangle
$$

$$
\Rightarrow \quad \frac{1}{x-y}=\frac{-22}{-110}=\frac{1}{5} \text { and } \frac{1}{x+y}=\frac{-10}{-110}=\frac{1}{11}
$$

$$
\Rightarrow \quad x-y=5 \text { and } x+y=11
$$

Adding these quations, we get

$$
2 x=16 \Rightarrow x=8
$$

Subtractipg these equations, we get

$$
(x+y))(x-y)=11-5 \Rightarrow 2 y=6 \Rightarrow y=3
$$

Hence, the speed of the boat in still water is $8 \mathrm{~km} / \mathrm{h}$ and the speed of the stream is $3 \mathrm{~km} / \mathrm{h}$.
34. If $x=\cot A+\cos A$ and $y=\cot A-\cos A$, show that $x^{2}-y^{2}=4 \sqrt{x y}$.

Folution. C.iven $\cot A+\cos A=x$
and $\cot A-\cos A=y$
Adding (1) and (2), we get

$$
\begin{equation*}
2 \cot A=x+y \tag{2}
\end{equation*}
$$

$$
\begin{array}{ll}
\Rightarrow & \cot A=\frac{x+y}{2} \\
\Rightarrow & \frac{1}{\tan A}=\frac{x+y}{2} \\
\Rightarrow & \tan A=\frac{2}{x+y}
\end{array}
$$

Subtracting (2) from (1), we get

$$
\begin{array}{ll}
\Rightarrow & 2 \cos A=x-y \\
\Rightarrow & \cos A=\frac{x-y}{2} \\
\Rightarrow & \frac{1}{\sec A}=\frac{x-y}{2} \\
\Rightarrow & \sec A=\frac{2}{x-y}
\end{array}
$$

We know that

$$
\sec ^{2} A-\tan ^{2} A=1
$$

$$
\Rightarrow \quad\left(\frac{2}{x-y}\right)^{2}-\left(\frac{2}{x+y}\right)^{2}=1
$$

[using.(3) and (4)]

$$
\Rightarrow \quad \frac{4}{(x-y)^{2}}-\frac{4}{(x+y)^{2}}=1
$$

$$
\Rightarrow \quad 4\left[\frac{(x+y)^{2}-(x-y)^{2}}{(x-y)^{2}(x+y)^{2}}\right]=1
$$

$$
\Rightarrow \quad 4\left[\frac{4 x y}{(x-y)^{2}(x+y)^{2} /}\right]=\mathbf{1}
$$

$$
\begin{array}{ll}
& \\
\Rightarrow & \\
\Rightarrow & \\
& \left.16 x y=-(x-y)^{2}(x+y) x^{2} /(x-y)(x+y)\right]^{2} \\
2
\end{array}
$$

$$
\Rightarrow
$$

$$
16 x y=\left(x^{2}-y^{2}\right)^{2}
$$

$$
4 \sqrt{x y}=x^{2}-y^{2}
$$

