CCD QUESTION PAPER

MATHEMATICS

(With Solutions)

CLASS X

Time Allowed. 3 to $31 / 2$ Hours]

General Instructions :

(i) All questions are compulsory.

(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of

- 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
(iii) Question numbers 1 to 10 in Section A are multiple choli questions where you are to select one correct option out of the given form.
(iv) There is no overall choice. However, interthat choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted
(vi) An additional 15 minutes time has been allotted to read this question paper only.

Section ' A '

Question numbers 1 to 10 are of one mark each.

1. The decimal expansion of the rational number $\frac{23}{2^{2} \cdot 5}$ will terminate after
(a) one decimal place
(c) three decimal places

Solution. Choice (b) is correct.

$$
\frac{23}{2^{2} \cdot 5}=\frac{23}{2 \cdot(2 \cdot 5)}=\frac{23}{2(10)}=\frac{11.5}{10}=1.15
$$

Therdecinaal expansion of the rational number $\frac{23}{2^{2} \cdot 5}$ will terminate after two decimal places
(2.) $n^{2}-1$ is divisible by 8 , if n is
(a) anfinteger
(b) a natural number
(c) an odd integer
(d) an even integer

Solution. Choice (c) is correct.
For $n=1, n^{2}-1=(1)^{2}-1=0 \Rightarrow n^{2}-1$ is divisible by 8
For $n=3, n^{2}-1=(3)^{2}-1=8 \Rightarrow n^{2}-1$ is divisible by 8
For $n=-3, n^{2}-1=(-3)^{2}-1=8 \Rightarrow n^{2}-1$ is divisible by 8 .

3 If one of the zeroes of the quadratic polynomial $(k-1) x^{2}+k x+1$ is -3 , then the value of k is
(a) $-\frac{4}{3}$
(b) $\frac{4}{3}$
(c) $\frac{2}{3}$
(d) $-\frac{2}{3}$

Solution. Choice (b) is correct.
Since -3 is a zero of the polynomial $f(x)=(k-1) x^{2}+k x+1$, then

$$
\begin{array}{rlrl}
& & f(-3) & =0 \\
\Rightarrow & (k-1)(-3)^{2}+k(-3)+1 & =0 \\
\Rightarrow & 9(k-1)-3 k+1 & =0 \\
\Rightarrow & & 6 k-9+1 & =0 \\
\Rightarrow & & 6 k-8 & =0 \\
\Rightarrow & & k & =\frac{8}{6} \\
\Rightarrow & & k & =\frac{4}{3} .
\end{array}
$$

4. The lines representing the linear equations $2 x-y=3$ and $4 x-y=5$
(a) intersect at a point
(b) are paraHel
(c) are coincident

Solution. Choice (a) is correct.
For the given pair of linear equations $2 x-y=3$ and $4 x-y=5$, we have

$$
\frac{2}{4} \neq \frac{-1}{-1} \neq \frac{3}{5} \text { i.e., } \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

\Rightarrow The lines representing the given pear equations intersect at a point.
5. In figure, if D is mid-point of $B C$, the value of $\frac{\tan x^{\circ}}{\tan y^{\circ}}$ is
(a) $\frac{1}{3}$
(c) 2

(b) 1
(d) $\frac{1}{2}$

Solution. Choice (d) is correct.
In fight $\triangle A C D, \tan x^{\circ}=\frac{D C}{A C}$
In righ $A C B, \tan y^{\circ}=\frac{B C}{A C}$
$\ldots \frac{\tan x^{\circ}}{\tan y^{\circ}}=\frac{D C / A C}{B C / A C}=\frac{D C}{B C}=\frac{D C}{2 D C}=\frac{\mathbf{1}}{\mathbf{2}} . \quad[\because D$ is the mid-point of $B C \therefore B C=2 D C]$
6. Construction of a cumulative frequency table is useful in determining the
(a) mean
(b) median
(c) mode
(d) all the above three measures

Solution. Choice (b) is correct.
7. If $x=3 \sec ^{2} \theta-1, y=\tan ^{2} \theta-2$ then $x-3 y$ is equal to
(a) 3
(b) 4
(c) 8
(d) 5

Solution. Choice (c) is correct.

$$
\begin{array}{ll}
& x-3 y=\left(3 \sec ^{2} \theta-1\right)-3\left(\tan ^{2} \theta-2\right) \\
\Rightarrow & x-3 y=3 \sec ^{2} \theta-3 \tan ^{2} \theta-1+6 \\
\Rightarrow & x-3 y=3\left(1+\tan ^{2} \theta\right)-3 \tan ^{2} \theta+5 \\
\Rightarrow & x-3 y=3+3 \tan ^{2} \theta-3 \tan ^{2} \theta+5 \\
\Rightarrow & x-3 y=3+5=8 .
\end{array}
$$

8. If $\cos \theta+\cos ^{2} \theta=1$, the value of $\sin ^{2} \theta+\sin ^{4} \theta$ is
(a) 0
(b) 1
(c) -1
(d) 2

Solution. Choice (b) is correct.
Given : $\quad \cos \theta+\cos ^{2} \theta=1$
$\Rightarrow \quad \cos \theta=1-\cos ^{2} \theta$
$\Rightarrow \quad \cos \theta=\sin ^{2} \theta$
$\Rightarrow \quad \cos ^{2} \theta=\sin ^{4} \theta$
$\Rightarrow \quad . \quad 1-\sin ^{2} \theta=\sin ^{4} \theta$
$\Rightarrow \quad 1=\sin ^{2} \theta+\sin ^{4} \theta \cdot$
9. If $\triangle A B C \cong \triangle R Q P, \angle A=80^{\circ}, \angle B<60^{\circ}$, the value of $\angle P$ is
(a) 60°
(b) 50°
(c) 40°
(d) 30°

Solution. Choice (c) is correct.
Since $\triangle A B C$ and $\triangle R Q P$ are similar, therefore,

$$
\angle A=\angle R, \angle B=\angle Q \text { and } \angle C=\angle P
$$

But $\angle A=80^{\circ}$ and $\angle B=60^{\circ}$ (given)

$$
\begin{array}{rlrl}
\therefore & \angle R & =\angle A=80 \text { and } \angle Q \Rightarrow \angle B=60^{\circ} . \\
& \therefore & \angle P & =180^{\circ}-\angle R-\angle Q \\
& & =180^{\circ}-800^{\circ}-60^{\circ}
\end{array} \quad\left[\because \angle R=80^{\circ} \text { and } \angle Q=60^{\circ}\right]
$$

$$
=180^{\circ}-140^{\circ}
$$

\Rightarrow 10. In the given figure, $\angle A C B=90^{\circ}, \angle B D C=90^{\circ}, C D=4 \mathrm{~cm}, B D=3 \mathrm{~cm}$, $A C=12 \mathrm{~cm} . \cos A-\sin A$ is equal to

(b) $\frac{5}{13}$
(d) $\frac{7}{13}$

Solution. Choice (d) is correct.
In right $\triangle B D C$,

$$
\begin{array}{ll}
& \\
\Rightarrow & B C^{2}=B D^{2}+C D^{2} \\
\Rightarrow & B C^{2}=(3)^{2}+(4)^{2} \\
\Rightarrow & \\
\Rightarrow & B C^{2}=9+16 \\
\Rightarrow & B C^{2}=25 \\
B C=5 \mathrm{~cm}
\end{array}
$$

In right $\triangle A C B$,

$$
\begin{aligned}
& & A B^{2}=A C^{2}+B C^{2} \\
\Rightarrow & & A B^{2}=(12)^{2}+(5)^{2} \\
\Rightarrow & - & A B^{2}=144+25 \\
\Rightarrow & & A B^{2}=169 \\
\Rightarrow & & A B=13 \mathrm{~cm}
\end{aligned}
$$

In right $\triangle A C B$,

$$
\text { In right } \triangle A C B \text {, }
$$

$$
\cos A=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{A C}{A B}=\frac{12 \mathrm{~cm}}{13 \mathrm{~cm}}=\frac{12}{13}
$$

and

$$
\sin A=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{B C}{A B}=\frac{5 \mathrm{~cm}}{13 \mathrm{~cm} /=\frac{5}{13}}
$$

$\therefore \quad \cos A-\sin A=\frac{12}{13}-\frac{5}{13}=\frac{7}{13}$.

Section B'

Question numbers 11 to 18 carry 2 marks each.

11. Use Euclid's division algorithm to find HCF of 870 and 225.

Solution. Given integers are 870 and 225
Applying Euclid division algorithm to 870 and 225, we get

$$
\begin{align*}
870 & =225 \times 3+195 \tag{1}\\
225 & =195 \times 1+30 \tag{2}\\
195 & =30 \times 6 \times 15 \tag{3}\\
30 & =15 \times 2 \times 0 \tag{4}
\end{align*}
$$

In equation (4), the remainder is zero. So , the last divisor or the non-zero remainder at the earliest stage, ie., in equation (3) is 15 .

Therefore, HCF of 870 and 225 is 15 .
12. Solve $37 x+43 y=123,43 x+37 y=.117$.

Solution. We have
and

$$
\begin{equation*}
37 x+43 y=123 \tag{1}
\end{equation*}
$$

Adding (1) and (2), we get
$(37 x+43 y)+(43 x+37 y)=123+117$

$$
80 x+80 y=240
$$

$$
\begin{gather*}
80(x+y)=240 \\
x+y=3 \tag{3}
\end{gather*}
$$

Subtracting (1) from (2), we get

$$
(43 x+37 y)-(37 x+43 y)=117-123
$$

$\Rightarrow(43 x-37 x)+(37 y-43 y)=-6$

$$
\begin{array}{lrl}
\Rightarrow & \quad 6 x-6 y=-6 \\
\Rightarrow & x-y=-1 \tag{4}
\end{array}
$$

Adding (3) and (4), we get

$$
(x+y)+(x-y)=3+(-1)
$$

$\Rightarrow \quad 2 x=2$
$\Rightarrow \quad x=1$
Substituting $x=1$ in (3), we get

$$
1+y=3 \Rightarrow y=2
$$

Hence, $\boldsymbol{x}=1$ and $\boldsymbol{y}=2$.

Or

Solve $x+\frac{6}{y}=6,3 x-\frac{8}{y}=5$.
Solution. The given system of linear equations are

$$
\begin{array}{r}
x+\frac{6}{y}=6 \\
3 x-\frac{8}{y}=5 \tag{2}
\end{array}
$$

Multiplying (1) by 3, we get

$$
\begin{equation*}
3 x+\frac{18}{y}=18 \tag{3}
\end{equation*}
$$

Subtracting (2) from (3), we get

$$
\begin{aligned}
\left(3 x+\frac{18}{y}\right)-\left(3 x-\frac{8}{y}\right) & =18-5 \\
\Rightarrow \quad & \frac{18}{y}+\frac{8}{y}
\end{aligned}=13
$$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

Substituting 2 =2in (1), we get
$\Rightarrow \begin{aligned} \Rightarrow \\ \Rightarrow\end{aligned}$
Hence, $x=3$ and $y=2$.
18. $0, \beta$ are the roots of the quadratic polynomial $p(x)=x^{2}-(k+6) x+2(2 k-1)$.

Find the value of k, if $\alpha+\beta=\frac{1}{2} \alpha \beta$.
Solytion. Since α and β are the roots of the quadratic polynomial

$$
p(x)=x^{2}-(k+6) x+2(2 k-1), \text { therefore }
$$

$$
\begin{align*}
\alpha+\beta & =\frac{-[-(k+6)]}{1}=k+6 \tag{1}\\
\alpha \beta & =\frac{2(2 k-1)}{1}=2(2 k-1) \tag{2}
\end{align*}
$$

Given that: $\alpha+\beta=\frac{1}{2} \alpha \dot{\beta}$
$\Rightarrow \quad(k+6)=\frac{1}{2}[2(2 k-1)]$
$\Rightarrow \quad k+6=2 k-1$
$\Rightarrow \quad 2 k-k=6+1$
$\Rightarrow \quad k=7$.
14. If $\cot \theta=\frac{7}{8}$, find the value of $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$.

Solution. We have

$$
\begin{aligned}
\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)} & =\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& =\left(\frac{\cos \theta}{\sin \theta}\right)^{2} \\
& =(\cot \theta)^{2} \\
& =\left(\frac{7}{8}\right)^{2} \\
& =49
\end{aligned}
$$

15. Find the median class and the modal class for the following distribution.

C.I.	$135-140$	$140-145$	$145-150$	$150-155$	$155-160$	$160-165$
f	4	$7 /$	18	11	6	5

Solution.

C.I.	f	Cumulative Frequency (cf)
135-140	4	4
$149-145$. 7	11
145-150	18	29
$150-155$	11.	40
($155-160$	6	46
$\wedge 160-165$	5	51
- Total	$n=\Sigma f=51$	

Here, $n=51$ and $\frac{n}{2}=\frac{51}{2}=25.5$.
Now, 145 - 150 is the class interval whose cumulative frequency 29 is greater than $\frac{n}{2}$ $=25.5$.
$\therefore 145-150$ is the median class.
Since the maximum frequency is 18 , therefore, the modal class is $145-150$.
16. Write the following distribution as more than type cumulative frearency distribution :

C.I.	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Frequency	2	6	8	14	15	5

Solution. We prepare the cumulative frequency table by more than fype method as given below :

More than type Cumulative Frequeney Distribution

C.I.	Frequency	Morethan	Cumulative frequency
$50-55$	2	50	50
$55-60$	6	55	48
$60-65$	8	60	42
$65-70$	14	65	34
$70-75$	15	70	20
$75-80$	5	75	5

17. Two poles of height 10 m and 15 m stand vertically on a plane ground. If the distance between their feet is $5 \sqrt{3} \mathrm{~m}$, find the distance between their tops.

Solution. Let $A B$ be a pole of height $15 \mathrm{~m} /$ and $C D$ be a pole of height 10 m standing on a plane ground. The distance between their feet is $D B=5 / \sqrt{3} \mathrm{~m}$. We have to calculate $A C$ the distance between thein ops.

Draw $C E \| D B$ intersecting $A B$ at $1 E$ such that $C E=D B=$ $5 \sqrt{3} \mathrm{~m}$.
$\therefore \quad A E=A B-B E=X B-C D \quad[\because C D=E B]$
$\Rightarrow \quad A K=15 \mathrm{~m}-10 \mathrm{~m}=5 \mathrm{~m}$
In right $\triangle A E C$, we have
$A C^{2}=A E^{2} \div C E^{2}$
[By Pythagoras Theorem]

$\left.\Rightarrow \quad A C^{2}=5\right)^{2}+(5 \sqrt{3})^{2}$
$\Rightarrow \quad A C^{2}=25+75$
$\Rightarrow \quad A C^{2}=100$
$A C=10 \mathrm{~m}$
Hence, the distance between the tops of the poles is $\mathbf{1 0} \mathbf{~ m}$.
18. In figure, $A B \perp B C, D E \perp A C$ and $G F \perp B C$. Prove that $\triangle A D E \sim \triangle G C F$.

Solution. Since $A B \perp B C$ and $G F \perp B C$, therefore $A B \| G F$.

$$
\begin{equation*}
\therefore \quad \quad \angle 1=\angle 3 \tag{1}
\end{equation*}
$$

In $\triangle A D E$, we have

$$
\Rightarrow \quad \begin{align*}
\angle 1+\angle 2 & =90^{\circ} . \\
\Rightarrow \quad \angle 3+\angle 2 & =90^{\circ} \tag{2}
\end{align*}
$$

In $\triangle G C F$, we have

$$
\begin{equation*}
\angle 3+\angle 4=90^{\circ} \tag{3}
\end{equation*}
$$

From (2) and (3), we have

$$
\angle 3+\angle 2=\angle 3+\angle 4
$$

$\Rightarrow \quad \angle 2=\angle 4$
In $\triangle A D E$ and $\triangle G C F$, we have

$$
\angle 1=\angle 3
$$

and $\quad \angle 2=\angle 4$
So, by AA similarity of criterion, we have $\triangle A D E \sim \triangle G C F$
Alternative Method :
Since $A B \perp B C$ and $G F \perp B C$, therefore $A B \not C F F^{\circ}$
$\therefore \quad \angle 1=\angle 3$
In $\triangle A D E$ and $\triangle G C F$, we have $\angle 1=\angle 3$
and $\angle A E D=\angle G F C$
$\angle 1=\angle 3$

So, by AA similarity criterign, we have $\triangle A D E \sim \triangle G C F$.

Section ${ }^{(C)}$

Question numbers 1928 carry 3 marks each.

19. Show that $5+\sqrt{2}$ is an irrational number.

Solution. Thet us assume, to the contrary, that $5+\sqrt{2}$ is rational i.e., we can find co-prime a and $b(b \neq 0)$ such that \geqslant

Rearranging the equ
Rearranging the equation, we get

$$
\int-\sqrt{2}=\frac{a}{b}-5=\frac{a-5 b}{b}
$$

Since a and \dot{b} are integers, we get $\frac{a-5 b}{b}$ is rational, and so $\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational.
This contradietion has arisen because of our incorrect assumption that $5+\sqrt{2}$ is rational.
So, we conclude that $5+\sqrt{2}$ is irrational.

Or

Prove that $\sqrt{3}+\sqrt{5}$ is an irrational.
Solution. Let us assume, to the contrary that $\sqrt{3}+\sqrt{5}$ is a rational.
That is, we can find co-prime p and $q(q \neq 0)$ such that

$$
\begin{array}{cc}
& \sqrt{3}+\sqrt{5}=\frac{p}{q} \\
\Rightarrow & \frac{p}{q}-\sqrt{3}=\sqrt{5} \\
\Rightarrow & \left(\frac{p}{q}-\sqrt{3}\right)^{2}=(\sqrt{5})^{2} \\
\Rightarrow & \frac{p^{2}}{q^{2}}-2 \frac{p}{q} \cdot \sqrt{3}+3=5 \\
\Rightarrow & \frac{p^{2}}{q^{2}}-2=2 \frac{p}{q} \cdot \sqrt{3} \\
\Rightarrow & \frac{p^{2}-2 q^{2}}{q^{2}}=2 \frac{p}{q} \cdot \sqrt{3} . \\
\Rightarrow & \frac{p^{2}-2 q^{2}}{2 p q}=\sqrt{3}
\end{array}
$$

Since, p and q are integers, $\frac{p^{2}-2 q^{2}}{2 p q}$ is rational, and so $\sqrt{3}$ is rational. But this contradicts the fact that $\sqrt{3}$ is irrational.

So, we conclude that $\sqrt{3}+\sqrt{5}$) is irrational.

20. Show that 5^{n} cean't end with the digit 2 for any natural number n.

Solution. We know that any positive integer ending with the digit $0,2,4,6$ and 8 is divisible by 2 and soits prime factorisation must contain the prime 2.

We have: $5{ }^{2}$
\Rightarrow There is no pxime int the factorisation of 5^{n}
$\Rightarrow 2$ does not occury in the prime factorisation of 5^{n} for any natural number.
[By uniqueness of the Fundamental Theorem of Arithmetic]
Hence, 5^{n} can'tend with the digit 2 for any natural number.
21. If α, β are the two zeroes of the polynomial $21 y^{2}-y-2$, find a quadratic polynomial whose zeroes are 2α and 2β.

Solution. Since α and β are zeroes of the polynomial $21 y^{2}-\dot{y}-2$, therefore

$$
\alpha+\beta=\frac{-(-1)}{21}=\frac{1}{21}
$$

$\Rightarrow \quad \alpha \beta=\frac{-2}{21}=-\frac{2}{21}$
Let S and P denote respectively the sum and product of zeroes of the required polynomial, then

$$
S=2 \alpha+2 \beta=2(\alpha+\beta)=2 \cdot \frac{1}{21}=\frac{2}{21}
$$

and

$$
P=(2 \alpha)(2 \beta)=4 \alpha \beta=4 \cdot\left(-\frac{2}{21}\right)=-\frac{8}{21}
$$

Hence, the required polynomial $p(x)$ is given by

$$
p(x)=k\left(x^{2}-S x+P\right)
$$

$\Rightarrow \quad p(x)=k\left(x^{2}-\frac{2}{21} x-\frac{8}{21}\right)$, where k is any non-zero real number.
$\Rightarrow \quad p(x)=k\left(21 x^{2}-2 x-8\right)$, where k is any non-zero regin number.
22. If A, B, C are interior angles of $\triangle A B C$, show that

$$
\sec ^{2}\left(\frac{B+C}{2}\right)-1=\cot ^{2} \frac{A}{2}
$$

Solution. If A, B, C are interior angles of $\triangle A B C$, then

$$
\begin{array}{rlrl}
& & A+B+C & =180^{\circ} \\
\Rightarrow & & B+C & =180^{\circ}-A \\
\Rightarrow & \frac{B+C}{2} & =\frac{180^{\circ}-A}{2} \\
\Rightarrow & & =90^{\circ}-\frac{A}{2} \\
\Rightarrow & \sec ^{2}\left(\frac{B+C}{2}\right) & =\sec ^{2}\left(90^{\circ}-\frac{1}{2}\right) \\
& &
\end{array}
$$

$$
\Rightarrow \quad \sec ^{2}\left(\frac{B+C}{2}\right)=\operatorname{cosec}^{2} \frac{A}{2}
$$

$$
\left.\Rightarrow \quad \sec ^{2}\left(\frac{B+C}{2}\right) \neq\left(1+\cot ^{2} \frac{A}{2}\right)\right\rangle
$$

$\left[\because \sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta\right]$
$\Rightarrow \sec ^{2}\left(\frac{B+C}{2}\right)-1=\cot ^{2} \frac{A}{2}$.

Or

Prove that $: \frac{\cos \left(90^{\circ}-\theta\right)}{1+\sin \left(90^{\circ}-\theta\right)}+\frac{1+\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=2 \operatorname{cosec} \theta$

Solution We have

L.H.S. $=\frac{\cos \left(90^{\circ}-\theta\right)}{1+\sin \left(90^{\circ}-\theta\right)}+\frac{1+\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}$
$\left[\because \sin \left(90^{\circ}-A\right)=\cos A\right.$ and $\left.\cos \left(90^{\circ}-A\right)=\sin A\right]$

$$
=\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{(1+\cos \theta) \sin \theta}
$$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta+\left(1+\cos ^{2} \theta+2 \cos \theta\right)}{(1+\cos \theta) \sin \theta} \\
& =\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+1+2 \cos \theta}{(1+\cos \theta) \sin \theta} \\
& =\frac{1+1+2 \cos \theta}{(1+\cos \theta) \sin \theta} \\
& =\frac{2+2 \cos \theta}{(1+\cos \theta) \sin \theta} \\
& =\frac{2(1+\cos \theta)}{(1+\cos \theta) \sin \theta} \\
& =\frac{2}{\sin \theta} \\
& =2 \operatorname{cosec} \theta \\
& =\text { R.H.S. }
\end{aligned}
$$

23. In figure, $A B C$ is a triangle right-angled at $B, A B=5 \mathrm{~cm}, \angle A C B=30^{\circ}$. Find the length of $B C$ and $A C$.

Solution. We have In $\triangle A B C$, right-angled at B and $\angle A C B=30^{\circ}$
$\therefore \quad \sin 30^{\circ}=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{A B}{A C}$
$\Rightarrow \quad \frac{1}{2}=\frac{5 \mathrm{~cm}}{A C} \quad\left[\because A B=5 \mathrm{~cm}\right.$ (given) and $\left.\sin 30^{\circ}=\frac{1}{2}\right]$
$\Rightarrow \quad A C=10 \mathrm{~m}$
and $\cos 30^{\circ}=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{B C}{A C}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\sqrt{2}}{2}=\frac{B C}{10 c \mathrm{~cm}} \\
& \Rightarrow B C=10 \times \frac{\sqrt{3}}{2} \mathrm{~cm} \\
& \Rightarrow B C=5 \sqrt{3} \mathrm{~cm} .
\end{aligned} \quad\left[\because \cos 30^{\circ}=\frac{\sqrt{3}}{2} \text { and } A C=10 \mathrm{~cm} \text { by }(1)\right]
$$

24. The mqan of the following frequency distribution is 25.2 . Find the missing frequency x.

C.I.	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	8	x	10	11	9

Solution.
Calculation of Mear

C.I.	Frequency $\left(f_{i}\right)$	Class-mark $\left(x_{i}\right)$	$=f_{i} x_{i}$
$0-10$	8	5	40
$10-20$	x	15	$15 x$
$20-30$	10	25	250
$30-40$	11	35	385
$40-50$	9	.45	405
Total	$n=\Sigma f_{i}=38+x$		$\Sigma f_{i} x_{i}=1080+15 x$

From the table, $n=\Sigma f_{i}=38+x$, $\Sigma f_{i} x_{i}=1080+15 x$
Using the formula :

$$
\begin{aligned}
& \text { Mean }=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
& \Rightarrow \quad \text { (given) } 25.2=\frac{1080+15 x}{38+x} \\
& \Rightarrow \quad(38+x)(25.2)=1080+15 x \\
& \Rightarrow \quad 38 \times 25.2+25.2 x=1080+15 x \\
& \Rightarrow \quad 957.6+25.2 x=1080+15 x \\
& \Rightarrow \quad 25.2 x-15 x=1080-957.6 \\
& \Rightarrow \quad-10.2 x=122.4 \\
& \Rightarrow \quad x=\frac{122.4}{10.2}=12
\end{aligned}
$$

Hence, the missing frequency x is 12 .
25. Find the mode of the following frequeney distribution :

C.I.	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	2	3	5	7	4	2	2

Solution. Since the class $35-45$ has the maximum frequency, therefore $35-45$ is the modal class.
$\therefore \quad l=35, h=10, f_{1}=7,-D=5, f_{2}=4$
Using the formula :

$$
\text { Mode }=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h
$$

frequeney distribution:

26. Nine times a two-digit number is the same as twice the number obtained by interchanging the digits of the number. If one digit of the number exceeds the other number by 7 , find the number.

Solution. Let the unit's place digit be x and ten's place digit be y.
$\therefore \quad$ Original number $=10 y+x$
The number obtained by reversing the digits $=10 x+y$
According to the.first condition .
Nine times a two-digit number $=$ Twice the number obtained by interchanging thie

- digits of the number

$$
\begin{aligned}
\Rightarrow & & 9 \times(10 y+x) & =2 \times(10 x+y) \\
\Rightarrow & \ddots & 90 y+9 x & =20 x+2 y \\
\Rightarrow & & 90 y-2 y & =20 x-9 x \\
\Rightarrow & & 88 y & =11 x \\
\Rightarrow & & 8 y & =x
\end{aligned}
$$

According to second condition
One digit of the number exceeds the other number by
$\therefore \quad x-y=7$
Substituting $x=8 y$ from (1) in (2), we get

$$
8 y-y=7
$$

$\Rightarrow \quad 7 y=7$
$\Rightarrow \quad y=1$
Putting $y=1$ in (1), we get

$$
x=8 \times \text { 本 }=8
$$

Hence, the original number $=10 y+x=10 \times 1+8=18$. .
The ratio of incomes of two persons is $9: 7$ and the ratio of their expenditures is $4: 3$. If each of them manages tosave 2000 per month, find their monthly incomes.

Solution. Let the ratio of incomes of two persons be $9 x: 7 x$.
Let the ratio of expenditures of two persons be $4 y: 3 y$.
\therefore Monthly saving of first person $=9 x-4 y$
Monthly saving of second person $=7 x-3 y$
According to the condition given, each person saves monthly ₹ 2000

$$
\therefore \quad \begin{align*}
& 9 x-4 y=2000 \tag{1}\\
& 7 x-2 y \neq 2000
\end{align*}
$$

Subtracting (2) from (N), we get

$$
\begin{array}{r}
9 x-4(2 x)=2000 \\
9 x-8 x=2000 \\
x=2000
\end{array}
$$

Putting $x=2000$ in (3), we get

$$
y=2 \times 2000=4000
$$

Hence, the monthly incomes of two persons be $9 \times 2000=₹ \mathbf{1 8 , 0 0 0}$ and $7 \times 2000=₹ \mathbf{1 4 , 0 0 0}$.
27. In figure, $X Y \| Q R, \frac{P Q}{X Q}=\frac{7}{3}$ and $P R=6.3 \mathrm{~cm}$. Find $Y R$.

Solution. In $\triangle P Q R, X Y \| Q R$

$\therefore \quad \frac{P X}{X Q}=\frac{P Y}{Y R}$
$\Rightarrow \quad \frac{P X}{X Q}+1=\frac{P Y}{Y R}+1$
$\Rightarrow \quad \frac{P X+X Q}{X Q}=\frac{P Y+Y R}{Y R}$
$\Rightarrow \quad \frac{P Q}{X Q}=\frac{P R}{Y R}$
$\Rightarrow \quad$ (given) $\frac{7}{3}=\frac{P R}{Y R}$
$\Rightarrow \quad \frac{7}{3}=\frac{6.3 \mathrm{~cm}}{Y R}$.
$\Rightarrow \quad Y R=\frac{3 \times 6.3 \mathrm{~cm}}{7}$
$\Rightarrow \quad Y R=3 \times 0.9 \mathrm{~cm}$
$\Rightarrow \quad Y R=2.7 \mathrm{~cm}$.

28. In figure, $A B D$ is a triangle in which $\angle D A B=90^{\circ}$ and $A C \perp B D$. Prove that $A C^{2}=B C \times D C$.

Solution. Gives: $\triangle A B D$ is right triangle, right-angled at A and $A C \perp B D$.
To prove : $A C^{2}=B C \times D C$
Proof : 逄 $\triangle A B D$,

$$
\begin{equation*}
\angle B A C+\angle C A B=90^{\circ} \tag{1}
\end{equation*}
$$

In $\triangle C D A$,
$\angle D A G+\angle C D A=90^{\circ}$

In $\triangle D O A$ and $\triangle A C B$, we have

$$
\angle D=\angle C A B
$$

$$
\begin{aligned}
D A C)+\angle C A B & =\angle D A C+\angle C D A \\
\angle C A B & =\angle C D A \\
\angle C A B & =\angle D
\end{aligned}
$$

$$
\angle D C A=\angle B C A .
$$

So, by AA-criterion of similarity of triangles, we have

$$
\triangle D C A \sim \triangle A C B
$$

$$
\frac{D C}{A C}=\frac{A C}{B C}
$$

Hence, $\boldsymbol{A C}^{\mathbf{2}}=\boldsymbol{B C} \times \boldsymbol{D C}$.

Section 'D

Question numbers 29 to 34 carry 4 marks each.
29. Solve the following system of equations graphically and/find the vertices of the triangle formed by these lines and the x-axis.

Solution. We have

$$
\begin{aligned}
& & 4 x-3 y+4 & =0 \\
\Rightarrow & & 3 y & =4 x+4 \\
\Rightarrow & & y & =\frac{4(x+1)}{3}
\end{aligned}
$$

Table of $4 x-3 y+4=0$

x	5	-1	2
y	8	0	4
$\therefore \therefore$	A	B	C

and $4 x+3 y-20=0$

Take $X O X^{\prime}$ and YOY' as the axes of coordinates: Plotting the points $A(5,8), B(-1,0)$, $C(2,4)$ and joining them by a line, we get line whig is the graph of $4 x-3 y+4=0$.

Further, plotting the points $D(-1,8), E \times 5,0), C(2,4)$ and joining them by a line, we get a line ' m '. which is the graph of $4 x+3 y-20=0$ (see figure).

From the graph of the two equations, we find that the two lines l and m intersect each other at the point $C(2,4)$.
$\therefore \quad x=2, y=4$ is the solution.
The first line $4 x-3 y+4=0$ meets the x-axis at the point $B(-1,0)$.
The second line $4 x+3 y-20=0$ meets the x-axis at the point $E(5,0)$.
Hence, the vertices of the triangle $E C B$ formed by the given lines with the x-axis ary $\boldsymbol{E}(5,0), \boldsymbol{C}(\mathbf{2}, \mathbf{4})$ and $\boldsymbol{B}(-1,0)$ respectively.
30. Draw 'less than ogive' for the following frequency distribution and hence obtain the median.

Marks obtained	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$76-80$
No. of students	3	4	3	3	4	7	9

Solution. We prepare the cumulative frequency table by less tian type netiod as given below :

Marks obtained	No. of students	Marks less than	Cumulative frequency
$10-20$	3	20	3
$20-30$	4	30	7
$30-40$	3	40	10
$40-50$	3	60	13
$50-60$	4	70	17
$60-70$	9	80	24
$70-80$			33

Here, 20, 30, 40, 50, 60, 70, 80 are the upperlimits of the respective class intervals less than $10-20,20-30,30-40,40-50,50-60,60-70,70-80$. To represent the data in the table graphically, we mark the upper limits of the class intervals on the horizontal axis (x-axis) and

their corresponding cumulative frequencies on the vertical axis (y-axis), choosing a convenient scale other than the class intervals, we assume a class interval $0-10$ prior to the first class interval $10-20$ with zero frequency.

Now, plot the points $(10,0)(20,3),(30,7),(40,10),(50,13),(60,17),(70,24)$ and $(80,33)$ on a graph paper and join them by a free hand smooth curve. The curve we get is called an ogive of less than type (see figure).

Let $\frac{n}{2}=\frac{33}{2}=16.5$ on the y-axis (see figure).
From this point, draw a line parallel to the x-axis cutting the curve at a point, From this point, draw a perpendicular to the x-axis. The point of intersection of this perdendicular with the x-axis determine the median marks of the data (see figure) i.e., median marks $=\mathbf{5 8 . 7 5}$.
31. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

Solution. Given : $\triangle A B C$ and $\triangle P Q R$ such that $\triangle A B C \sim \triangle P Q R$
To prove : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$
Construction : Draw $A D \perp B C$ and $P S \perp Q R$.
$\frac{1}{2} \times B C \times A D$

Proof : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P S}$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C \times A D}{Q R \times P S}$
[Area of $\Delta=\frac{1}{2}$ (base) \times height]

As $\triangle A B C \sim \triangle P Q R$, therefore

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P} \tag{5}
\end{equation*}
$$

Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}=\frac{B C^{2}}{Q R^{2}}=\frac{C A^{2}}{R P^{2}}$
[From (4) and (5)]
Or

Prove that, in a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

Solution. Given : A right triangle $A B C$, right angled at B.
To prove : $(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$
i.e.,

$$
A C^{2}=A B^{2}+B C^{2}
$$

Construction : Draw $B D \perp A C$.
Proof : $\triangle A D B \sim \triangle A B C$.
[If a perpendicular is drawn from the vertex of the right angle of a triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.]

So,

$$
\frac{A D}{A B}=\frac{A B}{A C}
$$

$\Rightarrow \quad A D . A C=A B^{2}$
Also, $\triangle B D C \sim \triangle A B C$
So,

$$
\frac{C D}{B C}=\frac{B C}{A C}
$$

$\Rightarrow \quad C D . A C=B C^{2}$
Adding (1) and (2), we have
$A D \cdot A C+C D \cdot A C=A B^{2}+B C^{2}$
$\Rightarrow(A D+C D) \cdot A C=A B^{2}+B C^{2}$
$\Rightarrow \quad A C \cdot A C=A B^{2}+B C^{2}$

Hence, $\quad A C^{2}=A B^{2}+{ }^{\prime} \boldsymbol{B C}^{2}$
32. Find all the zeroes of the polynomial $x^{4}-5 x^{3}+2 x^{2}+10 x-8$, if two of its zeroes are $\sqrt{2},-\sqrt{2}$.

Solution. Since wozeroes are $\sqrt{2}$ and $-\sqrt{2}$, therefore $(x-\sqrt{2})(x+\sqrt{2})=\left(x^{2}-2\right)$ is a factor of the given polynomial.

Now, we divide the given polynomial by $\left(x^{2}-2\right)$.

$\ddagger 2 x^{2}$	
$-5 x^{3}+4 x^{2}+10 x-8$	
$\pm 5 x^{3}$	$\pm 10 x$
$4 x^{2}$	-8
$\ldots x^{2}$	${ }_{+}^{8}$
0	

$\left[\right.$ First term of the quotient is $\left.\frac{x^{4}}{x^{2}}=x^{2}\right]$
$\left[\right.$ Second term of the quotient is $\left.\frac{-5 x^{3}}{x^{2}}=-5 x\right]$ $\left[\right.$ Third term of the quotient is $\left.\frac{4 x^{2}}{x^{2}}=4\right]$

So, $x^{4}-5 x^{3}+2 x^{2}+10 x-8=\left(x^{2}-2\right)\left(x^{2}-5 x+4\right)$

$$
\begin{aligned}
& =(x-\sqrt{2})(x+\sqrt{2})\left(x^{2}-x-4 x+4\right) \\
& =(x-\sqrt{2})(x+\sqrt{2})[x(x-1)-4(x-1)] \\
& =(x-\sqrt{2})(x+\sqrt{2})(x-1)(x-4)
\end{aligned}
$$

So, the zeroes of $x^{2}-5 x+4$ are given by 1 and 4 .
Hence, all the zeroes of the given polynomial are $\sqrt{2},-\sqrt{2}, 1$ and 4.
33. Prove that $\frac{\cot \theta-1+\operatorname{cosec} \theta}{\cot \theta+1-\operatorname{cosec} \theta}=\frac{1}{\operatorname{cosec} \theta-\cot \theta}$

Solution. We have

$$
\begin{aligned}
\text { L.H.S. } & =\frac{\cot \theta-1+\operatorname{cosec} \theta}{\cot \theta+1-\operatorname{cosec} \theta} \\
& =\frac{[(\cot \theta+\operatorname{cosec} \theta)-1]}{1-(\operatorname{cosec} \theta-\cot \theta)} \\
& =\frac{(\cot \theta+\operatorname{cosec} \theta)-1}{\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)-(\operatorname{cosec} \theta-\cot \theta)} \\
& =\frac{(\cot \theta+\operatorname{cosec} \theta)-1}{(\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)-(\operatorname{cosec} \theta /-\cot \theta)} \\
& =\frac{(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)[(\operatorname{cosec} \theta+\cot \theta)-1]}{(\operatorname{cosec}} \\
& =\frac{1}{\operatorname{cosec} \theta-\cot \theta} \\
& =\text { R.H.S. }
\end{aligned}
$$

If $\tan \theta+\sin \theta=\boldsymbol{m}$ and $\tan \theta-\sin \theta=\boldsymbol{n}$, show that

$$
\begin{equation*}
\left(m^{2}-n^{2}\right)^{2} /=16 m n \tag{1}
\end{equation*}
$$

Solution. Given, $\tan \theta+\sin \theta-m$.

$$
\begin{equation*}
\tan \theta-\sin \theta=n \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get

Subtracting (2) from (1), we get

$$
\begin{equation*}
2 \sin \theta=m-n \tag{4}
\end{equation*}
$$

$$
\sin \theta=\frac{m-n}{2}
$$

$$
\Rightarrow \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}=\frac{2}{m-n} .
$$

We know that

$$
\begin{aligned}
& \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1 \\
& \Rightarrow \quad\left(\frac{2}{m-n}\right)^{2}-\left(\frac{2}{m+n}\right)^{2}=1 \\
& \Rightarrow \quad \frac{4}{(m-n)^{2}}-\frac{4}{(m+n)^{2}}=1 \\
& \Rightarrow \quad 4\left[\frac{1}{(m-n)^{2}}-\frac{1}{(m+n)^{2}}\right]=1 \\
& \Rightarrow \quad 4\left[\frac{(m+n)^{2}-(m-n)^{2}}{(m-n)^{2}(m+n)^{2}}\right]=1 \\
& \Rightarrow 4\left[\frac{\left(m^{2}+n^{2}+2 m n\right)-\left(m^{2}+n^{2}-2 m n\right)}{(m-n)^{2}(m+n)^{2}}\right]=1 \\
& \Rightarrow \\
& 4\left[\frac{2 m n+2 m n}{(m-n)^{2}(m+n)^{2}}\right] \\
& \Rightarrow \quad \frac{4 \times 4 m n}{\left.(m-n)^{2}(m)+n\right)^{2}}=1 \\
& \Rightarrow \\
& \frac{16 m n}{(m-n)^{2}(m+n)^{2}} \Rightarrow 1 \\
& \Rightarrow \quad \frac{16 m n}{(m)-n)(m)+n)]^{2}}=1 \\
& \Rightarrow \text {. } \\
& \text { Hence, } \\
& \left(m^{2}-n^{2}\right)^{2}=16 m n
\end{aligned}
$$

34. Prove $\sqrt{\sqrt{1+\sin A}}=\sec A+\tan A$.

Solution: We have
$\mathrm{B}_{\text {L.H.S. }} \sqrt{\frac{1+\sin A}{1-\sin A}}$

$$
=\sqrt{\frac{1+\sin A}{1-\sin A} \times \frac{1+\sin A}{1+\sin A}}
$$

$$
\begin{aligned}
& =\frac{1+\sin A}{\sqrt{(1-\sin A)(1+\sin A)}} \\
& =\frac{1+\sin A}{\sqrt{1-\sin ^{2} A}} \\
& =\frac{1+\sin A}{\sqrt{\cos ^{2} A}} \\
& =\frac{1+\sin A}{\cos A} \\
& =\frac{1}{\cos A}+\frac{\sin A}{\cos A} \\
& =\sec A+\tan A \\
& =\text { R.H.S. }
\end{aligned}
$$

