## CCE QUESTION PAPER

## MATHEMATICS

(With Solutions)
CLASS X

## 

## General Instructions :

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections $/ A, B, C$ and $D$. Section A comprises of 10 questions of 1 mark each, Section $B$ comprises of 8 questions of 2 marks each, Section $C$ comprises of 10 questions of 3 marks each and Section $D$ comprises of 6 questions of 4 marks each.
(iii) Question numbers 1 to 10 in Section A are multiobe choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal chdice has been provided in 1 question of two marks, 3 questions of three marks each, and 2 questions of four marks each. You have to attempt only one of the alternatives in all strch questions.
(v) Use of colculators is not permitted.
(vi) An additional 15 minutes time has oren allotted to read this question paper only.

Section 'A'
Question numbers 1 to 10 are of one mark each.

1. Which of the following numbers has terminating decimal expansion?
(a) $\frac{37}{45}$

(b) $\frac{21}{2^{3} 5^{6}}$
(c) $\frac{17}{49}$
(d) $\frac{89}{2^{2} 3^{2}}$

Solution. Choiee (b) is correct.
The rationa number $\frac{\mathbf{2 1}}{\mathbf{2}^{3} 5^{6}}$ has terminating decimal expansion because the prime factorisation of $q=2^{3} \cdot 5^{6}$ is of the form $2^{m} \cdot 5^{n}$, where $m$ and $n$ are non-negative integers.
$\geqslant 2$. The value of $p$ for which the polynomial $x^{3}+4 x^{2}-p x+8$ is exactly divisible by $(x-$
(a) 6
(b) 3
(c) 5
(d) 16

Solution- Choice (d) is correct.
Since the polynomial $f(x)=x^{3}+4 x^{2}-p x+8$ is exactly divisible by $(x-2)$, therefore 2 is a zero of polynomilal $f(x)$
$\Rightarrow \quad f(2)=0$.

$$
\begin{array}{cc}
\Rightarrow & (2)^{3}+4(2)^{2}-p(2)+8=0 \\
\Rightarrow & 8+16-2 p+8=0 \\
\Rightarrow & 2 p=32 \\
\Rightarrow & p=16
\end{array}
$$

3. $\triangle A B C$ and $\triangle P Q R$ are similar triangles such that $\angle A=32^{\circ}$ and $\angle R=65^{\circ}$, then $\angle B$ is
(a) $83^{\circ}$
(b) $32^{\circ}$
(c) $65^{\circ}$
(d) $97^{\circ}$

Solution. Choice ( $a$ ) is correct.
Since $\triangle A B C$ and $\triangle P Q R$ are similar triangles, therefore

$$
\angle A=\angle P, \angle B=\angle Q \text { and } \angle C=\angle R
$$

But $\angle A=32^{\circ}$ and $\angle R=65^{\circ}$ (given)

4. In figure, the value of the median of the data using the graph of less than ogive and more than ogive is
(a) 5
(c) 80

Solution. Choice (d) is correct.
The median of the given data is given by the $x$-coordinate of the point of intersection of 'more than dgive' and less than ogive'.

Here, the $x$ coordinate of the point of intersection of the given graph (see figure) of less than and more than ogives is $\mathbf{1 5}$.
5. If $\theta=45^{\circ}$, the value of $\operatorname{cosec}^{2} \theta$ is

(b) 1
(c) $\frac{1}{2}$
(d) 2

Solution. Choice (d) is correct.

$$
\operatorname{cosec}^{2} 45^{\circ}=\left(\operatorname{cosec} 45^{\circ}\right)^{2}=(\sqrt{2})^{2}=2 . \quad\left[\because \operatorname{cosec} 45^{\circ}=\frac{1}{\sin 45^{\circ}}=\frac{1}{1 / \sqrt{2}}=\sqrt{2}\right]
$$

6. $\sin \left(60^{\circ}+\theta\right)-\boldsymbol{\operatorname { c o s }}\left(30^{\circ}-\theta\right)$ is equal to
(a) $2 \cos \theta$
(b) $2 \sin \theta$
(c) 0
(d) 1

Solution. Choice (c) is correct.
$\sin \left(60^{\circ}+\theta\right)-\cos \left(30^{\circ}-\theta\right)$

$$
\begin{aligned}
& =\cos \left[90^{\circ}-\left(60^{\circ}+\theta\right)\right]-\cos \left(30^{\circ}-\theta\right) . \\
& =\cos \left(30^{\circ}-\theta\right)-\cos \left(30^{\circ}-\theta\right) \\
& =0
\end{aligned}
$$

7. The [HCF $\times \mathrm{LCM}]$ for the numbers 50 and 20 is
(a) 10
(b) 100
(c) 1000
(d) 50

Solution. Choice (c) is correct.
We know that
HCF $\times$ LCM $=$ Product of two positive numbers.
$\therefore \mathrm{HCF} \times \mathrm{LCM}=50 \times 20$

$$
=1000 .
$$

28. The value of $k$ for which the pair of higear equations $4 x+6 y-1=0$ and $2 x+k y-7=0$ represents parallel lines is
(a) $k=3$
(b) $\mathrm{A}=2$
(c). $k=4$
(d) $k=-2$
Solution. Choice (c) is correct.

Since the lines represented by the given pair of linear equations are parallel, therefore

$$
\begin{array}{ll} 
& \frac{4}{2}=\frac{6}{k} \neq \frac{-1}{-7} \\
\Rightarrow & 2=\frac{6}{k} \\
\Rightarrow & k=6 \div 2 \\
\Rightarrow & k=3 .
\end{array}
$$

9. If $\sin A+\sin ^{2} A=1$, then the value of $\cos ^{2} A+\cos ^{4} A$ is
(a) 2
(c) -2
(b) 1

$$
\text { (d) } 0
$$

Solution. Choice (b) is correct.
Given, $\sin ^{2}+\sin ^{2} A=2$

$$
\begin{array}{lrl}
\Rightarrow & \sin A=1-\sin ^{2} A \\
\Rightarrow & \sin A=\cos ^{2} A \\
\Rightarrow & \sin ^{2} A=\cos ^{4} A \\
\Rightarrow & \cos ^{4} A+\cos ^{2} A=\cos ^{2} A
\end{array}
$$

$$
\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]
$$

[Squaring both sides]
10. The value of $[(\sec A+\tan A)(1-\sin A)]$ is equal to
(a) $\tan ^{2} A$
(b) $\sin ^{2} A$
(c) $\operatorname{Cos} A$
(d) $\sin A$

Solution. Choice (c) is correct.
$(\sec A+\tan A)(1-\sin A)$

$$
\begin{aligned}
& =\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A) \\
& =\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A) \\
& =\frac{1-\sin ^{2} A}{\cos A} \\
& =\frac{\cos ^{2} A}{\cos A} \\
& =\cos A
\end{aligned}
$$

## Section ${ }^{\prime}$

Question numbers 11 to 18 carry 2 marks each.
11. Find a quadratic polynomial with zerges $3+\sqrt{2}$ and $3-\sqrt{2}$.

Solution. Let $S$ and $P$ denote the sum and product of a required quadratic polynomial $p(x)$, then
and

$$
\begin{aligned}
& S=(3+\sqrt{2})+(3-\sqrt{2})=6 \\
& P=(3+\sqrt{2})(3-\sqrt{2})=9-2=7
\end{aligned}
$$

$\therefore \quad p(x)=k\left[x^{2}-S x+P\right]$, where $k$ is non-zero real number
or $\quad p(x)=k\left[x^{2}-6 x+7\right]$, where $\hat{\text { o }}$ is non-zero real number.
12. In figure, $A B C D$ is a parallelograna. Find the values of $x$ and $y$.


Solutign. Since $A B C D$ is a parallelogram, therefore
and $\quad \begin{array}{rl}x & y=5\end{array}$
Adding ( 1 ) and (2), we get
$(x+y)+(x-y)=9+5$

$$
\begin{aligned}
2 x & =14 \\
x & =7
\end{aligned}
$$

...(1) Diagonals of a parallelogram bisect
...(2) each other.
$\Rightarrow O C=A \bar{O}$ and $O B=D O$
where $O$ is the point of intersection of diagonals $A C$ and $B D$

Subtracting (2) from (1), we get

$$
\left.\begin{array}{rlrl} 
& & (x+y)-(x-y) & =9-5 \\
\Rightarrow & & \cdot & 2 y
\end{array}\right)=4
$$

13. If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$ where $4 A$ is an acute angle, find the value of $A$. Solution. We have

$$
\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)
$$

$\Rightarrow \operatorname{cosec}\left(90^{\circ}-4 A\right)=\operatorname{cosec}\left(A-20^{\circ}\right)$
$\Rightarrow \quad 90^{\circ}-4 A=A-20^{\circ}$
$\Rightarrow \quad 4 A+A=90^{\circ}+20^{\circ}$
$\Rightarrow \quad 5 A=110^{\circ}$
$\Rightarrow \quad A=22^{\circ}$
Or
If $5 \tan \theta=4$, find the value of $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}$.
Solution. We have

$$
5 \tan \theta=4 \Rightarrow \tan \theta=\frac{4}{5}
$$

$\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}=\frac{(5 \sin \theta-3 \cos \theta) / \cos \theta}{(5 \sin \theta+2 \cos \theta) / \cos \theta}$
[Dividing numerator and denominator by $\cos \theta$ ] $=\frac{\frac{5 \sin \theta}{\cos \theta}-\frac{3 \cos \theta}{\cos \theta}}{\frac{5 \sin \theta}{\cos \theta}+\frac{2 \cos \theta}{\cos \theta}}$

$$
=\frac{5 \tan \theta-3}{5 \tan \theta+2}
$$


14. In figure, $P Q \| C D$ and $P R \| C B$. Prove that $\frac{A Q}{Q D}=\frac{A R}{R B}$.


Solution. We have
In $\triangle A C D$, since $P Q \| C D$, then by BPT,

$$
\frac{A Q}{Q D}=\frac{A P}{P C}
$$

Again, in $\triangle A B C$, since $P R \| C B$, then by BPT,

$$
\frac{A P}{P C}=\frac{A R}{R B}
$$

From (1) and (2), we have

$$
\frac{A Q}{Q D}=\frac{A R}{R B}
$$

15. In figure, two triangles $A B C$ and $D B C$ are on the same base $B C$ in which $\angle A=\angle D=90^{\circ}$. If $C A$ and $B D$ meet each other at $E$, show that $A E \times C E=B E \times E D$.


Solution. In $\triangle A E B$ and $\triangle D E C$

$$
\angle A=\angle D=90^{\circ}
$$

and $\angle A E B=\angle D E C$
Therefore, by AAfcriterion of similarity, we have

$$
-\triangle A B B \sim \triangle D E C
$$

$\Rightarrow \quad \angle \frac{A E}{D E}=\frac{B E}{C E}$
$\Rightarrow A E \times C E=B E \times E D$
$[\because D E=E D]$
16. Check whether $6^{\boldsymbol{n}}$ can end with the digit 0 for any natural number $n$.

Solution. We know that any positive integer ending with the digit 0 is divisible by 5 and so its prime factorisation must contain the prime 5.

We have

$$
6^{n}=(2 \times 3)^{n}=2^{n} \times 3^{n}
$$

$\Rightarrow$ There are two prime in the factorisation of $6^{n}=2^{n} \times 3^{n}$
$\Rightarrow 5$ does not occur in the prime factorisation of $6^{n}$ for any $n$.
[By uniqueness of the Fundamental Theorem of Arithmetic]
Hence, $6^{n}$ can never end with the digit $\mathbf{0}$ for any natural number.
17. Find the mean of the following frequency distribution :

| Class | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 8 | 12 | 10 | 11 | 9 |

Solution. Let the assumed mean be $a=25$ and $h=10$


Using the formula :

$$
\begin{aligned}
\text { Mean } & =a+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h \\
& =25+\frac{1}{50} \times 10 \\
& =25+\frac{1}{5} \\
& =25+0.2 \\
& =25.2
\end{aligned}
$$

Hence the mean is 25.2
18. Find the mode of the following data :

| Class | $0-20$ | $20-40$ | $40-60$ | $60-80$ |
| :---: | :---: | :---: | :---: | :---: |
| Frequency | 15 | 6 | 18 | 10 |

Solution. Since theclass $40-60$ has the maximum frequency 18 , therefore $40-60$ is the modal class.
$\therefore l=40, h=20, f_{1}=18, f_{0}=6, f_{2}=10$
Using the formula

$$
\begin{aligned}
& \text { Mode }=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& =40+\frac{18-6}{2 \times 18-6-10} \times 20
\end{aligned}
$$

$$
\begin{aligned}
& =40+\frac{12}{36-16} \times 20 \\
& =40+\frac{12}{20} \times 20 \\
& =40+12 \\
& =52
\end{aligned}
$$

Hence the mode is 52.

## Section ${ }^{\text {C }}$

Question numbers 19 to 28 carry 3 marks each.
19. Prove that $\sqrt{7}$ is irrational.

Solution. Let us assume, to the contrary, that $\sqrt{7}$ is rational Then

$$
\sqrt{7}=\frac{\bar{p}}{q} \text {, where } p \text { and } q \text { are integers and } q \neq \varnothing,
$$

Suppose $p$ and $q$ have a common factor other than then we can divide by the common factor, we get

$$
\sqrt{7}=\frac{a}{b}, \text { where } a \text { and } b \text { are co-prima }
$$

So, $\quad \sqrt{7} b=a$
Squaring both sides and rearranging, werget $7 b^{2}=q^{2}$
$\Rightarrow \quad a^{2}$ is divisible by 7
$\Rightarrow \quad a$ is also divisible by 7
Let $a \fallingdotseq 7 m$, where $m$ is an integer
Substituting $a=7 m$ in $7 b^{2}=a^{2}$, we get

$$
\begin{array}{rlrl} 
& 7 b^{2} & =49 m^{2} \\
\Rightarrow \quad b^{2} & =7 m^{2}
\end{array}
$$

This means that $b^{2}$ is divisible by 7 , and so $b$ is also divisible by 7. Therefore, $a$ and $b$ have at least 7 as a common factor. But this contradicts the fact that $a$ and $b$ are co-prime: This contradiction has arisen because of our incorrect assumption that $\sqrt{7}$ is rational.

So, we conclude that $\sqrt{7}$ is iryational.

## Prove that $3+\sqrt{5}$ is an irrational number.

Solution? Let usassume, to the contrary, that $3+\sqrt{5}$ is rational.
That is, weean find co-prime $a$ and $b(b \neq 0)$ such that


Rearranging the equation, we have

$$
\sqrt{5}=\frac{a}{b}-3=\frac{a-3 b}{b}
$$

Since $a$ and $b$ are integers, we get $\frac{a-3 b}{b}$ is rational, and so $\sqrt{5}$ is rational.
But this contradicts the fact that $\sqrt{5}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $3+\sqrt{5}$ is rational.
So, we conclude that $3+\sqrt{5}$ is irrational.
20. Use Euclid's division algorithm to find the HCF of 10224 and 9648.

Solution. Given integers are 10224 and 9648.
Applying Euclid division algorithm to 9648 and 10224, we get

$$
\begin{align*}
10224 & =9648 \times 1+576  \tag{1}\\
9648 & =576 \times 16+432  \tag{2}\\
576 & =432 \times 1+144  \tag{3}\\
432 & =144 \times 3+0 \tag{4}
\end{align*}
$$



In equation (4), the remainder is zero. So, the last divisor or the non-zeropemainder at the earliest stage, ie., in equation (3) is 144.

Therefore, HCF of 10224 and 9648 is 144.
ك21. If $\alpha$ and $\beta$ are zeroes of the quadratic polynomial $x^{2}-6 x+a$; find the value of ' $a$ ' if $3 \alpha+2 \beta=20$.

Solution. Since $\alpha$ and $\beta$ are the zeroes of the quadratic polynomial $f(x)=x^{2}-6 x+a$
$\therefore \quad \alpha+\beta=\frac{-(-6)}{1}=6$
and

$$
\alpha \beta=\frac{a^{\prime}}{1}=a
$$

Given : $3 \alpha+2 \beta=20$
$\Rightarrow \alpha+(2 \alpha+2 \beta)=20$
$\Rightarrow \quad \alpha+2(\alpha+\beta)=20$
$\Rightarrow \quad \alpha+2(6)=20$
$\Rightarrow \quad \alpha+12=20$
$\Rightarrow \quad \alpha=20-12$
$\Rightarrow \quad \alpha=8$
Substituting $\alpha=8$ in $/ 1$, we get
$\Rightarrow \quad \beta=6=8$
$\Rightarrow \quad \beta=-2$
Further, subs fitting $\alpha=8$ and $\beta=-2$ in (2), we obtain
(8) $(-2)=a$
$\Rightarrow \quad$ o $=-16$.
22. Solve for $x$ and $y$.


$$
\frac{x}{2} \frac{3 y}{4}=-\frac{5}{2}
$$

Solution. We have

$$
\begin{equation*}
4 x+\frac{y}{3}=\frac{8}{3} \tag{1}
\end{equation*}
$$

and

$$
\frac{x}{2}+\frac{3 y}{4}=-\frac{5}{2}
$$

Multiplying (2) by 8, we get

$$
8\left(\frac{x}{2}+\frac{3 y}{4}\right)=8 \times\left(-\frac{5}{2}\right)
$$

$\Rightarrow \quad 4 x+6 y=-20$
Subtracting (1) from (3), we get

$$
\begin{array}{rlrl} 
& (4 x+6 y)-\left(4 x+\frac{y}{3}\right) & =-20-\frac{8}{3} \\
\Rightarrow & & 6 y-\frac{y}{3} & =\frac{-60-8}{3} \\
\Rightarrow & & \frac{18 y-y}{3} & =\frac{-68}{3} \\
\Rightarrow & & 17 y & =-68 \\
& \Rightarrow & y & =-4
\end{array}
$$

Substituting $y=-4$ in (2), we get

$$
\frac{x}{2}+\frac{3}{4}(-4)=-\frac{5}{2}
$$

$$
\Rightarrow \quad \frac{x}{2}-3=-\frac{5}{2}
$$

$$
\Rightarrow \quad \frac{x}{2}=-\frac{5}{2}+3
$$

$$
\Rightarrow \quad \frac{x}{2}=-\frac{5 / 46}{2}
$$

$$
\Rightarrow \quad \frac{x}{2}=\frac{1}{2}
$$


Hence, $x=1$ and $y=-4$.


The sum of the numerator and the denominator of a fraction is 8 . If $\mathbf{3}$ is added to both the numerator and the denominator, the fraction becomes $\frac{3}{4}$. Find the fraction.

Solution. Let the fraction be $\frac{x}{y}$.
It is given thet : the sum of the numerator and the denominator of a fraction is 8 .

$$
\begin{equation*}
x+y=8 \tag{1}
\end{equation*}
$$

Also, it is given that: if $\mathbf{3}$ is added to both the numerator and the denominator, the fraction becomes $\frac{3}{4}$.
$\therefore \quad \frac{x+3}{y+3}=\frac{3}{4}$
$\Rightarrow \quad 4 x+12=3 y+9$
$\Rightarrow \quad 4 x-3 y=-3$
Multiplying (1) by 3 ; we get

$$
3 x+3 y=24
$$

Adding (2) and (3), we get

$$
\begin{array}{rlrl} 
& (4 x-3 y)+(3 x+3 y) & =-3+24 \\
\Rightarrow & 4 x+3 x & =21 \\
\Rightarrow & & 7 x & =21 \\
\Rightarrow & x & =3
\end{array}
$$

Substituting $x=3$ in (1), we get

$$
\Rightarrow \quad \begin{aligned}
3+y & =8 \\
y & =8-3=5
\end{aligned}
$$

Hence, the fraction is $\frac{\mathbf{3}}{\mathbf{5}}$.
23. Prove that $\frac{\tan \theta-\cot \theta}{\sin \theta \cos \theta}=\boldsymbol{\operatorname { t a n }}^{2} \theta-\cot ^{2} \theta$.

Solution. We have

$$
\text { L.H.S. }=\frac{\tan \theta-\cot \theta}{\sin \theta \cos \theta}
$$

$$
\left.=\frac{(\tan \theta-\cot \theta)}{\sin \theta \cos \theta} \times \frac{(\tan \theta+\cot \theta)}{(\tan \theta+\cot \theta)} \text { [Multiplying and dividing by } \tan \theta+\cot \theta\right]
$$

$$
=\frac{\tan ^{2} 2^{2} \theta-\cot ^{2} \theta}{\sin \theta \cos \theta(\tan \theta+\cot \theta)}
$$

$$
=\frac{\tan ^{2} \theta-\cot ^{2} \theta}{\sin \theta \cos \theta \tan \theta+\sin \theta \cos \theta \cot \theta}
$$

$$
=\frac{\tan ^{2} \theta-\cot ^{2} \theta}{\sin \theta / \cos \theta \cdot \frac{\sin \theta}{\cos \theta}+\sin \theta \cdot \cos \theta \cdot \frac{\cos \theta}{\sin \theta}}
$$

$$
=\frac{\tan ^{2} \theta-\cot ^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta}
$$

$$
=\frac{\tan ^{2} \theta-\cot ^{2} \theta}{1}
$$

$$
=\tan ^{2} \theta-\cot ^{2} \theta
$$

$$
=\text { R.H.S. }
$$

24. In figure, $\triangle A B C$ is right-angled at $B, B C=7 \mathrm{~cm}$ and $A C-A B=1 \mathrm{~cm}$. Find the value of $\cos A-\sin A$.

Solution. Given :


$$
B C=7 \mathrm{~cm}
$$

and $A C-A B=1 \mathrm{~cm}$
In right-angled $\triangle A B C$, we have

$$
\begin{array}{rlrl} 
& & A C^{2} & =A B^{2}+B C^{2} \\
\Rightarrow & A C^{2}-A B^{2} & =B C^{2} \\
\Rightarrow & & (A C-A B)(A C+A B) & =B C^{2} \\
\Rightarrow & & (1)(A C+A B) & =(7)^{2} \\
\Rightarrow & A C+A B & =49 .
\end{array}
$$

Adding (2) and (3), we get

$$
\begin{array}{rlrl} 
& (A C-A B)+(A C+A B) & =1+49 \\
\Rightarrow & & 2 A C & =50 \\
\Rightarrow & & A C & =25 \mathrm{~cm}
\end{array}
$$

Substituting $A C=25 \mathrm{~cm}$ in (3), we obtain

|  |  | $25+A B$ | $=49$ |
| ---: | :--- | ---: | :--- |
| $\Rightarrow$ |  | $A B$ | $=49-25$ |
|  | $\Rightarrow$ | $A B$ | $=24 \mathrm{~cm}$ |

Thus, $A B=24 \mathrm{~cm}, B C=7 \mathrm{~cm}$ and $A C=25 \mathrm{~cm}$.

$\begin{aligned} \cos A & =\frac{24}{25} \\ & =\frac{24}{25}-\frac{7}{25}\end{aligned}$

$$
=\frac{17}{25} .
$$

25. In figure, $P$ and $Q$ are the mid-points of the sides $C A$ and $C B$ respectively of $\triangle A B C$ right-angled at $C$. Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$.


Solution. Since $\triangle A C B$ is a right triangle, right-angled at $C$, therefore

$$
A B^{2}=A C^{2}+B C^{2}
$$

Since $\triangle A C Q$ is a right triangle, right-angled at $C$, therefore

$$
\begin{equation*}
A Q^{2}=A C^{2}+C Q^{2} \tag{2}
\end{equation*}
$$

Again, $\triangle P C B$ is a right triangle, right-angled at $C$, therefore

$$
B P^{2}=B C^{2}+P C^{2}
$$

Adding (2) and (3), we get

$$
\Rightarrow \quad A Q^{2}+B P^{2}=A B^{2}+\left[\left(\frac{1}{2} B C\right)^{2}+\left(\frac{1}{2} A C\right)^{2}\right] \quad P \text { and } Q \text { are the mid-points of the }
$$

$$
\text { sides } C A \text { and } C B \text {. }
$$

$$
C Q=B Q=\frac{1}{2} B C
$$

26. The diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at point $O$. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and $C O D$.

Solution. $A B C D$ is a tyapezium in which $O$ is the point of intersection of the diagonals $A C$ and $B D$ and $A B \| C D$.

In triangles $A O B$ and $C O D$, we have

$$
\begin{aligned}
& \angle A O B=\angle C O D \quad[\text { Vertically opposite } \angle s \text { ] } \quad \text { [Alternate } \angle s \text { ] } \\
& \text { and } \quad \angle O A B=\angle O C D \quad \text { by } A A-c r i t e r i o n ~ o f ~ s i m i l a r i t y ~ o f ~ t r i a n g l e s, ~ w e ~ h a v e ~
\end{aligned}
$$



$$
\begin{aligned}
& A Q^{2}+B P^{2}=\left(A C^{2}+C Q^{2}\right)+\left(B C^{2}+P C^{2}\right) \\
& \Rightarrow \quad A Q^{2}+B P^{2}=\left(A C^{2}+B C^{2}\right)+\left(C Q^{2}+P C^{2}\right) \\
& \Rightarrow \quad A Q^{2}+B P^{2}=A B^{2}+\left(C Q^{2}+P C^{2}\right) \\
& \Rightarrow \quad A Q^{2}+B P^{2}=A B^{2}+\frac{1}{4}\left(B C^{2}+A C^{2}\right) \\
& A Q^{2}+B P^{2}=A B^{2}+\frac{1}{4} A B^{2} \\
& \Rightarrow 4\left(A Q^{2}+B P^{2}\right)=4 A B^{2}+A B^{2} \\
& \Rightarrow 4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}
\end{aligned}
$$

$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B^{2}}{C D^{2}}$ $\left[\begin{array}{c}\because \text { The ratio of the areas of two similar triangles is equal } \\ \text { to the ratio of the squares of their corresponding sides. }\end{array}\right]$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{(2 C D)^{2}}{C D^{2}}$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{4 C D^{2}}{C D^{2}}$.
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{4}{1}$
$\left[\because A B^{\prime}=2 C D\right.$ (given) $]$


Thus, the ratio of the areas of triangles $A O B$ and $C O D$ is $4: 1$.
27. The mean of the following frequency distribution 1550 . Find the value of $p$.

| Classes | $0-20$ | $20-40$ | $40-60$ | $.60-80$ | $80-100$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 17 | 28 | $\mathbf{3 2}$ | $\boldsymbol{p}$ | 19 |

Solution.
Calculation of Mean

| Classes | Class-mark ( $x_{i}$ ) | Prequency (ty | $f_{i} x_{i}$ |
| :---: | :---: | :---: | :---: |
| 0-20 | 10 | (17 | 170 |
| 20-40 | 30 | $1 \times 28 /$ | 840 |
| 40-60 | 50 | -32 | 1600 |
| 60-80 | 70 | - $p$ | $70 p$ |
| 80-100 | 90 | -) 19 | 1710 |
| Total |  | $\Upsilon_{h=\Sigma f_{i}=96+p}$ | $\Sigma f_{i} x_{i}=4320+70 p$ |


28. Compute the median for the following cumulative frequency distribution :

| Weight Less <br> ing than <br> $(\mathrm{kg})$ 38 | Less than 40 | Less than - 42 | Less than 44 | Less than 46 | Less than 48 | Less than 50 | Less <br> than <br> 52 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Rumber } \\ & \text { of } \\ & \text { students } \end{aligned}$ | 3 | 5 | 9 | 14 | 28 | 32 | 35 |

Solution.
Calculation of Median

| Weight in <br> $(\mathrm{kg})$ | No. of <br> students $(f)$ | Cumulative frequency <br> $(c f)$ |
| :---: | :---: | :---: |
| Less than 38 | 0 | 0 |
| $38-40$ | 3 | 3 |
| $40-42$ | 2 | 5 |
| $42-44$ | 4 |  |
| $44-46$ | 5 | 14 |
| $46-48$ | 14 | 28 |
| $48-50$ | 4 | 32 |
| $50-52$ | 3 |  |

Here, $\frac{n}{2}=\frac{35}{2}=17.5$. Now, $46-48$ is the class whose cumulatiy frequency is, 28 is greater than $\frac{n}{2}$,i.e., 17.5 .
$\therefore 46-48$ is the median class.
From the table, $f=14, c f=14, h=2$
Using the formula:

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =46+\left(\frac{17.5-14}{14}\right) \times 2 \\
& =46+\frac{3.5}{14} \times 2 \\
& =46+\frac{1}{7} \\
& =46+10.5 \\
& =46.5
\end{aligned}
$$

Find the missing frequencies in the following frequency distribution table, if $N=100$ and maedian is 32

| Marks obtained | 0 | -10 | $10-20$ | $20-30$ | $\mathbf{3 0 - 4 0}$ | $\mathbf{4 0 - 5 0}$ | $50-60$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Students | $\mathbf{1 0}$ | $\cdot ?$ | 25 | $\mathbf{3 0}$ | $?$ | 10 | 100 |

Shlution. Let $x$ and $y$ be the missing frequencies of classes $10-20$ and $40-50$ respectively.

## Calculation of Median

| Marks obtained | No. of students | Cumulative Frequency |
| :---: | :---: | :---: |
| $0-10$ | 10 | 10 |
| $10-20$ | $x$ | $10+x$ |
| $20-30$ | 25 | $35+x$ |
| $30-40$ | 30 | $65+x$ |
| $40-50$ | $y$ | $65+x+y$ |
| $50-60$ | 10 |  |
| Total | 100 |  |
| It is given that, $n=100=$ Total Frequency |  |  |
| $\therefore 75+x+y=100$ |  |  |
| $\Rightarrow \quad x+y=100-75$ |  |  |

The median is 32 (given), which lies in the class $30-40$
So, $\quad l=$ lower limit of median class $=30$
$f=$ frequency of median class $=30$
$c f=$ cumulative frequency of class preceding the median class $=35+x$
$h=$ class size $=10$
Using the formula :


## Section ${ }^{-}$

Question numbers 29 to 34 carry 4 marks each.
29. Divide $30 x^{4}+11 x^{3}-82 x^{2}-12 x+48$ by $\left(3 x^{2}+2 x-4\right)$ and verify the result by division algorithm.

Solution. We have $p(x)=30 x^{4}+11 x^{3}-82 x^{2}-12 x+48$ and $g(x)=3 x^{2}+2 x-4$
Now we divide $p(x)$ by $g(x)$ to get $q(x)$ and $r(x)$.

$$
\begin{array}{r}
3 x ^ { 2 } + 2 x - 4 \longdiv { 3 0 x ^ { 2 } - 3 x - 1 2 } 3 0 x ^ { 4 } + 1 1 x ^ { 3 } - 8 2 x ^ { 2 } - 1 2 x + 4 8 \\
=\frac{30 x^{4}+20 x^{3}-40 x^{2}}{-9 x^{3}-42 x^{2}-12 x+48} \\
\frac{-9 x^{3}-6 x^{2}+12 x}{+} \\
\frac{-36 x^{2}-24 x+48}{-36 x^{2}-24 x+48} \\
\frac{+}{0}
\end{array}
$$

$$
\left[\text { First term of the quotient is } \frac{30 x^{4}}{3 x^{2}}=10 x^{2}\right]
$$



Now,

$$
\begin{aligned}
p(x)=g(x) \cdot q(x)+r(x) & =\left(3 x^{2}+2 x-4\right) \times\left(10 x^{2}-3 x-12\right)+9 \\
& =30 x^{4}-9 x^{3}-36 x^{2}+20 x^{3}-6 x^{2}-24 x-40 x^{2}+12 x+48 \\
& =\mathbf{3 0} x^{4}+\mathbf{1 1} x^{3}-\mathbf{8 2 x} x^{2}-\mathbf{1 2 x}+\mathbf{4 8}
\end{aligned}
$$

30. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are dividedin the same ratio.

Solution. Given : A triangle $A B C$ in which a line parallel to $B C$ intersects other two sides $A B$ and $A C$ at $D$ and $E$ respectively.

To prove : $\frac{A D}{D B}=\frac{A E}{E C}$.
Construction : Join $B E, C D$ and draw $D M \perp A C$ and $E N \perp A B$.
Proof : Since $E N$ is perpendicular to $A B$,therefore, $E N$ is the height of triangles $A D E$ and $B D E$.

$$
\begin{aligned}
\therefore \quad \operatorname{ar}(\triangle A D E) & =\frac{1}{2}(\text { base } \times \text { hei } \\
& =\frac{1}{2}(A D \times E N)
\end{aligned}
$$


and
$\operatorname{ar}(\triangle B D E)=\frac{1}{2}$ (base $\times$ height $)$
$\Rightarrow \quad \frac{\operatorname{ar}(A A B D)}{\operatorname{ar}(A B D E)}=\frac{\frac{1}{2}}{1}(A A D \times E N)$
Siminarly $\frac{\operatorname{ar}(\triangle A D A)}{\operatorname{ar}(\triangle B D E)}=\frac{A D}{D B}(\triangle D D E)=\frac{\frac{1}{2}(A E \times D M)}{\frac{1}{2}(E C \times D M)}=\frac{A E}{E C}$

Note that $\triangle B D E$ and $\triangle D E C$ are on the same base $D E$ and between the same parallels $B C$ and $D E$.

$$
\begin{equation*}
\therefore \quad \operatorname{ar}(\triangle B D E)=\operatorname{ar}(\triangle D E C) \tag{5}
\end{equation*}
$$

From (4) and (5), we have

$$
\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle B D E)}=\frac{A E}{E C}
$$

Again from (3) and (6), we have

$$
\frac{A D}{D B}=\frac{A E}{E C}
$$

Hence, $\quad \frac{\boldsymbol{A D}}{\boldsymbol{D} \boldsymbol{B}}=\frac{\boldsymbol{A E}}{\boldsymbol{E} \boldsymbol{C}}$.

## Or

Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.

Solution. Given : A triangle $A B C$ such that :

$$
A C^{2}=A B^{2}+B C^{2}
$$

To prove : $\triangle A B C$ is a right-angled at $B$, i.e., $\angle B=90$.
Construction : Construct a $\triangle P Q R$ such that $\angle Q=90^{\circ}$ and $P Q=A B$ and $Q R=B C$.


Proof: In $\triangle P Q R$, as $\angle Q_{C}=90^{\circ}$, we have

$$
\begin{equation*}
P R^{2}=P Q^{2}+Q R^{2} \tag{1}
\end{equation*}
$$

$\Rightarrow \quad P R^{2}=A B^{2} /+B C^{2}$
But $\quad A C^{2}=A B^{2}+B C^{2}$
From (1) and (2), we have $P R^{2}=A C^{2}$
$\Rightarrow \quad P R=A C$
[By Pythagoras Theorem] [As $P Q=A B$ and $Q R=B C$ ]

Now in $\triangle A B G$ and $\triangle P Q R$, we have

$$
\angle B=\angle Q=90^{\circ}
$$

Hence, $\angle B=90^{\circ}$.
31. Without using trigonometric tables, evaluate the following :

## $\frac{\sec 37^{\circ}}{\operatorname{cosec} 53^{\circ}}+2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \cot 75^{\circ} \cot 65^{\circ}-3\left(\sin ^{2} 18^{\circ}+\sin ^{2} 72^{\circ}\right)$

Solution. We have
$\frac{\sec 37^{\circ}}{\operatorname{cosec} 53^{\circ}}+2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \cot 75^{\circ} \cot 65^{\circ}-3\left(\sin ^{2} 18^{\circ}+\sin ^{2} 72^{\circ}\right)$
$=\frac{\sec 37^{\circ}}{\operatorname{cosec}\left(90^{\circ}-37^{\circ}\right)}+2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \cot \left(90^{\circ}-15^{\circ}\right) \cot \left(90^{\circ}-25^{\circ}\right)$

$$
-3\left[\sin ^{2} / 18^{\circ}+\sin ^{2}\left(90^{\circ}-18^{\circ}\right)\right]
$$

$=\frac{\sec 37^{\circ}}{\sec 37^{\circ}}+2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \tan 15^{\circ} \tan 25^{\circ}-3\left(\sin ^{2} 18^{\circ}+\cos ^{2} 18\right)^{\circ}$
$\left[\because \operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec ^{-} \theta, \cot \left(90^{\circ}-\theta\right)=\tan \theta a n d \sin \left(90^{\circ}-\theta\right)=\cos \theta\right]$
$=1+2\left(\cot 15^{\circ} \cdot \tan 15^{\circ}\right)\left(\cot 25^{\circ} \cdot \tan 25^{\circ}\right) \cot 45^{\circ}-3(1) \quad\left(\cdots \cdot \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$=1+2(1)(1)(1)-3$
$=1+2-3$
$=0$.

Prove that : $\frac{\boldsymbol{\operatorname { t a n }} \theta}{1-\boldsymbol{\operatorname { c o t } \theta} \theta}+\frac{\mathbf{c}}{1-\boldsymbol{\operatorname { t a n }} \theta}=\mathbf{1}+\boldsymbol{\operatorname { s e c }} \theta \operatorname{cosec} \theta$

## Or

$\left[\because \cot \theta \tan \theta=1\right.$ and $\left.\cot 45^{\circ}=1\right]$


Solution. We have
L.H.S. $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$

$$
\frac{\sin \theta}{\cos \theta}, \frac{\cos \theta}{\sin \theta}
$$

$$
=\frac{\cos \theta}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\sin \theta}{1-\frac{\sin \theta}{\cos \theta}}
$$

$$
=\frac{(\sin \theta / \cos \theta)}{(\sin \theta-\cos \theta) / \sin \theta}+\frac{(\cos \theta / \sin \theta)}{(\cos \theta-\sin \theta) / \cos \theta}
$$

$$
=\frac{\sqrt{\sin ^{2} \theta}}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)}
$$

$$
\begin{aligned}
& =\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta}\right]
\end{aligned}
$$

$$
\begin{aligned}
&= \frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{(\sin \theta-\cos \theta)(\sin \theta \cos \theta)} \\
&= \frac{\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta}{\sin \theta \cos \theta} \\
&=\frac{1+\sin \theta \cos \theta}{\sin \theta \cos \theta} \\
&=\frac{1}{(\sin \theta \cos \theta)}+\frac{\sin \theta \cos \theta}{\sin \theta \cos \theta} \\
&=\sec \theta \operatorname{cosec} \theta+1 \\
&=\text { R.H.S. } \\
& \text { 32. If } 2 \cos \theta-\sin \theta=x \text { and } \cos \theta-3 \sin \theta=y . \text { Prove }
\end{aligned}
$$

Solution. Given
L.H.S. $=2 x^{2}+y^{2}-2 x y$

$$
\begin{aligned}
& =x^{2}+\left(x^{2}+y^{2}-2 x y\right) \\
& =x^{2}+(x-y)^{2} \\
& =(2 \cos \theta-\sin \theta)^{2}+\left[(2 \cos \theta-\sin \theta 0(-0 \cos \theta-3 \sin \theta)]^{2} \quad\right. \text { [using (1) and (2)] } \\
& =(2 \cos \theta-\sin \theta)^{2}+[(2 \cos \theta-\cos \theta)+(-\sin \theta+3 \sin \theta)]^{2} . \\
& =(2 \cos \theta-\sin \theta)^{2}+(\cos \theta+2 \sin \theta)^{2} \\
& =\left(4 \cos ^{2} \theta+\sin ^{2} \theta-4 \cos \theta \sin \theta+\left(\cos ^{2}\right) \theta+4 \sin ^{2} \theta+4 \cos \theta \sin \theta\right) \\
& =\left(4 \cos ^{2} \theta+\cos ^{2} \theta\right)+\left(\sin ^{2} \theta+4 \sin ^{2} \theta\right)+(-4 \cos \theta \sin \theta+4 \cos \theta \sin \theta) \\
& =5 \cos ^{2} \theta+5 \sin ^{2} \theta+0 \\
& \left.=5 \cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =5(1) \\
& =5 \\
& =\text { R.H.S. } \\
& \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]
\end{aligned}
$$

33. Check graphically whether the pair of linear equations $4 x-y-8=0$ and $2 x-3 y+6=0$ is consistent. Also, find the vertices of the triangle formed by these lines with the $x$-axis.

Solution. We have


$$
\begin{aligned}
\text { and } & 2 x-3 y+6 & =0 \\
\Rightarrow & 3 y & =2 x+6 \\
\Rightarrow & y & =\frac{2 x+6}{3}
\end{aligned}
$$

Table of $y=\frac{2 x+6}{3}$

| $x$ | 0 | -3 | 3 |
| ---: | ---: | ---: | ---: |
| $y$ | 2 | 0 | 4 |
|  | $D$ | $E$ | $C$ |

Take $X O X^{\prime}$ and $Y O Y^{\prime}$ as the axes of co-ordinates. Plotting the points $A(0,-8), B(2,0), C(3,4)$ and joining them by a line, we get a line $'$ ' which is the graph of $4 x-y-8=0$.

Further, plotting the point $D(0,2), E(-3,0), C(3,4)$ and joining them by a line, we get a line ' $m$ ' which is the graph of $2 x-3 y+6=0$.

From the graph of the two equations, we find that the two lines $l$ and $m$ intersect each other at the point $C(3,4)$.

Yes, the pair of linear equations $4 x-y-8=0$ and $2 x-3 y+6=0$ is consistent.
$\therefore \quad \boldsymbol{x}=\mathbf{3}, \boldsymbol{y}=\mathbf{4}$ is the solution.
The first line $4 x-y-8=0$ meets the $x$-axis at the points $B(2,0)$.
The second line $2 x-3 y+6=0$ meets the $x$-axis at the point $E(-3,0)$


Hence, the vertices of the triangle $E C B$ formed by the given lines with the $x$-axis are $\boldsymbol{E}(-\mathbf{3 , 0}), \boldsymbol{C}(\mathbf{3}, \mathbf{4})$ and $\boldsymbol{B}(\mathbf{2}, \mathbf{0})$ respectively.

34. The following tableshows the ages of 100 persons of a locality.


Dravy the less than ogive and find the median.

Solution. We prepare the cumulative frequency table by less than type method as given below :

| Age <br> (years) | Number of persons <br> (Frequency) | Age (years) <br> less than | Cumulative <br> frequency |
| :---: | :---: | :---: | :---: |
| $0-10$ | 5 | 10 | 5 |
| $10-20$ | 15 | 20 |  |
| $20-30$ | 20 | 30 | 40 |
| $30-40$ | 23 | 40 | 63 |
| $40-50$ | 17 | 60 |  |
| $50-60$ | 11 | 70 | 90 |
| $60-70$ | 9 |  | 160 |

Here 10, 20, 30, 40,50,60, 70 are the upper limits of the respective ctass-interyals less than $0-10,10-20,20-30,30-40,40-50,50-60,60-70$. To represent the data in the table graphically, we mark the upper limits of the class-intervals on the horizontal axis ( $x$-axis) and their corresponding cumulative frequencies on the vertical axis ( $y$-axis) choosing a convenient scale other than the class intervals, we assume a class inter al - $10-0$ prior to the first class interval $0-10$ with zero frequency.


Now, we plot the points $(0,0),(10,5),(20,20),(30,40)(40,63),(50,80),(60,91)$ and $(70,100)$ on a graph paper and join them by a free hand smooth curve to get the "less than ogive." (see figure)

Locate $\frac{n}{2}=\frac{100}{2}=50$ on $y$-axis.
From this point, draw a line parrallel to $x$-axis cutting the curve at a point. From this point, draw a perpendicular to $x$-axis. The point of intersection of this perpendicular with $x$-axis determine the median age (see figure) ie., median age is 34.5 years (approx).


