CCE QUESTION PAPER

MATHEMATICS

(With Solutions)

CLASS X

Time Allowed : 3 to 3½ Hours] Maximum Marks : 80

General Instructions :

- (i) All questions are compulsory.
- (ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- (iii) Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- (iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is not permitted.
- (vi) An additional 15 minutes time has been allotted to read this question paper only.

Section 'A'

Question numbers 1 to 10 are of one mark each.

1. Which of the following numbers has terminating decimal expansion ?

$(\alpha) = \frac{3}{4}$	87 15	$(b) \frac{21}{2^3 5^6}$
(c) $\frac{1}{4}$	1 <u>7</u> 19	(d) $\frac{89}{2^2 3^2}$

Solution. Choice (b) is correct.

The rational number $\frac{21}{2^35^6}$ has terminating decimal expansion because the prime

factorisation of $q = 2^3 5^6$ is of the form $2^m 5^n$, where m and n are non-negative integers.

=2. The value of p for which the polynomial $x^3 + 4x^2 - px + 8$ is exactly divisible by (x - 2) is

$$(b) 3 \\ (c) 5 \\ (d) 16 \\ (d)$$

f(2) = 0

Solution. Choice (d) is correct.

 \Rightarrow

Since the polynomial $f(x) = x^3 + 4x^2 - px + 8$ is exactly divisible by (x - 2), therefore 2 is a zero of polynomial f(x)

 $(2)^3 + 4(2)^2 - p(2) + 8 = 0$ 8 + 16 - 2p + 8 = 02p = 32⇒ p = 16. 3. $\triangle ABC$ and $\triangle PQR$ are similar triangles such that $\angle A = 32^{\circ}$ and $\angle R = 65^{\circ}$, then $\angle B$ is (a) ·83° (b) 32° (c) 65° (d) 97° **Solution.** Choice (a) is correct. Since $\triangle ABC$ and $\triangle PQR$ are similar triangles, therefore $\angle A = \angle P, \angle B = \angle Q$ and $\angle C = \angle R$ But $\angle A = 32^{\circ}$ and $\angle R = 65^{\circ}$ (given) $\angle B = 180^\circ - \angle A - \angle C$. $= 180^{\circ} - 32^{\circ} - 65^{\circ}$ $\angle C = \angle R = 65^{\circ} \text{ (given)}$ $= 180^{\circ} - 97^{\circ}$ $= 83^{\circ}$.

4. In figure, the value of the median of the data using the graph of less than ogive and more than ogive is

$(\dot{a}) 5$

(c) 80

Solution. Choice (d) is correct.

The median of the given data is given by the x-coordinate of the point of intersection of 'more than ogive' and less than ogive'.

Here, the x-coordinate of the point of intersection of the given graph (see figure) of less than and more than ogives is 15.

5. If $\theta = 45^\circ$, the value of $\csc^2 \theta$ is

1 (a) 12 $\mathbf{2}$

(d) 2

(b) 1

Solution. Choice (d) is correct.

 $\therefore \operatorname{cosec} 45^\circ = \frac{1}{\sin 45^\circ} = \frac{1}{1/\sqrt{2}} = \sqrt{2}$ $\operatorname{cosec}^2 45^\circ = (\operatorname{cosec} 45^\circ)^2 = (\sqrt{2})^2 = 2.$ 6. $\sin (60^\circ + \theta) - \cos (30^\circ - \theta)$ is equal to (a) $2\cos\theta$ (b) $2\sin\theta$ (d) 1(c) 0**Solution.** Choice (c) is correct. $\sin (60^\circ + \theta) - \cos (30^\circ - \theta)$ $[\because \cos(90^{\circ})$ $= \cos [90^{\circ} - (60^{\circ} + \theta)] - \cos (30^{\circ} - \theta)$ $A = \sin A$ $= \cos (30^\circ - \theta) - \cos (30^\circ - \theta)$ = 07. The [HCF \times LCM] for the numbers 50 and 20 is (b) 100 (a) 10 (d) 50 (c) 1000 **Solution.** Choice (c) is correct. We know that $HCF \times LCM = Product of two positive numbers.$ \therefore HCF \times LCM = 50 \times 20 = 1000. $\sqrt{8}$. The value of k for which the pair of linear equations 4x + 6y - 1 = 0 and 2x + ky - 7 = 0 represents parallel lines is (a) k = 3(b) k(d) $k = \frac{1}{2}$ (c) k = 4**Solution.** Choice (a) is correct. Since the lines represented by the given pair of linear equations are parallel, therefore 2 = $k = 6 \div 2$ ⇒ k = 3.⇒ 9. If $\sin A + \sin^2 A = 1$, then the value of $\cos^2 A + \cos^4 A$ is (a) 2 (b) 1(d) 0(c) - 2Solution. Choice (b) is correct. Given, $\sin A + \sin^2 A = 1$ $\sin A = 1 - \sin^2 A$ ⇒ $\sin A = \cos^2 A$ $[:: 1 - \sin^2 \theta = \cos^2 \theta]$ ⇒ $\sin^2 A = \cos^4 A$ [Squaring both sides] ⇒ $\cos^2 A = \cos^4 A$ $\cos^4 A + \cos^2 A = 1$ 10. The value of $[(\sec A + \tan A)(1 - \sin A)]$ is equal to (b) $\sin^2 A$ (a) $\tan^2 A$ $(d) \sin A$ (c) $\cos A$

Solution. Choice (c) is correct. $(\sec A + \tan A)(1 - \sin A)$

$$= \left(\frac{1}{\cos A} + \frac{\sin A}{\cos A}\right)(1 - \sin A)$$
$$= \left(\frac{1 + \sin A}{\cos A}\right)(1 - \sin A)$$
$$= \frac{1 - \sin^2 A}{\cos A}$$
$$= \frac{\cos^2 A}{\cos A}$$
$$= \cos A.$$

Section 'B'

Question numbers 11 to 18 carry 2 marks each.

11. Find a quadratic polynomial with zeroes $3 + \sqrt{2}$ and $3 - \sqrt{2}$.

Solution. Let S and P denote the sum and product of a required quadratic polynomial p(x), then

$$S = (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$$

and

$$P = (3 + \sqrt{2})(3 - \sqrt{2}) = 9 - 2 = 7$$

 \therefore $p(x) = k[x^2 - Sx + P]$, where k is non-zero real number

or $p(x) = k[x^2 - 6x + 7]$, where k is non-zero real number.

12. In figure, ABCD is a parallelogram. Find the values of x and y.

Solution. Since ABCD is a parallelogram, therefore

x + y = 9and y = 5Adding (1) and (2), we get (x + y) + (x - y) = 9 + 52x = 14 $\Rightarrow \qquad x = 7$...(1) Diagonals of a parallelogram bisect each other. OC = AO and OB = DOwhere O is the point of intersection of diagonals AC and BD

.

. . .

14. In figure, $PQ \parallel CD$ and $PR \parallel CB$. Prove that $\frac{AQ}{CP}$

Solution. We have In $\triangle ACD$, since $PQ \parallel CD$, then by BPT,

$$\frac{AQ}{QD} = \frac{AP}{PC}$$

Again, in $\triangle ABC$, since $PR \parallel CB$, then by BPT,

$$\frac{AP}{PC} = \frac{AR}{RB}$$

From (1) and (2), we have

$$\frac{AQ}{QD} = \frac{AR}{RB}$$

15. In figure, two triangles ABC and DBC are on the same base BC in which $\angle A = \angle D = 90^\circ$. If CA and BD meet each other at E, show that $AE \times CE = BE \times ED$.

Solution. In $\triangle AEB$ and $\triangle DEC$ $\angle A = \angle D = 90^{\circ}$

 $\angle AEB = \angle DEC$ and Therefore, by AA-criterion of similarity, we have - AAEB ~ ADEC.

$$\Rightarrow \qquad AE = BE \\ DE = CE$$

[Vertically opposite $\angle s$]

 $AE \times CE = BE \times ED$

[:: DE = ED]

[given]

...(1)

...(2)

16. Check whether 6^n can end with the digit 0 for any natural number n. Solution. We know that any positive integer ending with the digit 0 is divisible by 5 and so its prime factorisation must contain the prime 5.

We have

$$6^n = (2 \times 3)^n = 2^n \times 3^n$$

- \Rightarrow There are two prime in the factorisation of $6^n = 2^n \times 3^n$
- \Rightarrow 5 does not occur in the prime factorisation of 6ⁿ for any n.

[By uniqueness of the Fundamental Theorem of Arithmetic] Hence, 6^n can never end with the digit **0** for any natural number.

17. Find the mean of the following frequency distribution :

Class	0 – 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	8	12	10	11	9

Solution. Let the assumed mean be a = 25 and h = 10

	· · · · · · · · · · · · · · · · · · ·			
Class	Frequency (f_i)	Class-mark (x_i)	$u_i = \frac{x_i - 25}{10}$	$f_i u_i$
0-10	8	5	2)	- 16
10 - 20	12	15	-1	- 12
20 - 30	10	(25) .		· 0
30 – 4 0 .	11	. 35		.11
40 – 50	9	45	2)	18
Total	$n = \Sigma f_i = 50$			$\Sigma f_i u_i = 1$

Using the formula :

$$Mean = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
$$= 25 + \frac{1}{50} \times 10$$
$$= 25 + \frac{1}{5}$$
$$= 25 + 0.2$$
$$= 25.2$$

Hence the mean is 25.2

18. Find the mode of the following data :

Class	0 -	20	20 - 40	40 - 60	60 - 80 -
Frequency		<u>s</u>	6	18	10

Solution. Since the class 40 - 60 has the maximum frequency 18, therefore 40 - 60 is the modal class.

: $l = 40, h = 20, f_1 = 18, f_0 = 6, f_2 = 10$ Using the formula : Mode $= l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$

$$= 40 + \frac{18 - 6}{2 \times 18 - 6 - 10} \times 20$$

$$= 40 + \frac{12}{36 - 16} \times 20$$
$$= 40 + \frac{12}{20} \times 20$$
$$= 40 + 12$$
$$= 52$$

Hence the mode is 52.

Section 'C'

Question numbers 19 to 28 carry 3 marks each.

19. Prove that $\sqrt{7}$ is irrational.

Solution. Let us assume, to the contrary, that $\sqrt{7}$ is rational. Then

$$\sqrt{7} = \frac{p}{q}$$
, where p and q are integers and $q \neq q$

Suppose p and q have a common factor other than 1. Then we can divide by the common factor, we get

$$\sqrt{7} = \frac{a}{b}$$
, where a and b are co-prime

So, $\sqrt{7} b = a$

Squaring both sides and rearranging, we get $7b^2 = a$

 \Rightarrow a^2 is divisible by 7

 \Rightarrow a is also divisible by 7 Let a = 7m, where m is an integer [If r (prime) divides a^2 , then r divides a]

Substituting a = 7m in $7b^2 = a^2$, we get

 $\ddot{7b^2} = 49m^2$ $b^2 = 7m^2$

This means that b^2 is divisible by 7, and so b is also divisible by 7. Therefore, a and b have at least 7 as a common factor. But this contradicts the fact that a and b are co-prime. This contradiction has arisen because of our incorrect assumption that $\sqrt{7}$ is rational.

So, we conclude that $\sqrt{7}$ is irrational.

Or

Prove that $3 + \sqrt{5}$ is an irrational number.

Solution. Let us assume, to the contrary, that $3 + \sqrt{5}$ is rational. That is, we can find co-prime a and b ($b \neq 0$) such that

$$\frac{a}{b} - 3 = \sqrt{5}$$

å. F

Rearranging the equation, we have

$$\sqrt{5} = \frac{a}{b} - 3 = \frac{a - 3b}{b}$$

Since a and b are integers, we get $\frac{a-3b}{b}$ is rational, and so $\sqrt{5}$ is rational. But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $3 + \sqrt{5}$ is rational. So, we conclude that $3 + \sqrt{5}$ is **irrational**. 20. Use Euclid's division algorithm to find the HCF of 10224 and 9648. Solution. Given integers are 10224 and 9648. Applying Euclid division algorithm to 9648 and 10224, we get ...(1) $10224 = 9648 \times 1 + 576$...(2) $9648' = 576 \times 16 + 432$...(3) $576 = 432 \times 1 + 144$...(4) $432 = 144 \times 3 + 0$ In equation (4), the remainder is zero. So, the last divisor or the non-zero remainder at the earliest stage, *i.e.*, in equation (3) is 144. Therefore, HCF of 10224 and 9648 is 144. \checkmark 21. If α and β are zeroes of the quadratic polynomial $x^2 - 6x + a$; find the value of 'a' if $3\alpha + 2\beta = 20$. **Solution.** Since α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 6x + a$ $\alpha + \beta = \frac{-(-6)}{1} = 6$..(1) $\alpha\beta = \frac{a}{1} = a$...(2) and $3\alpha + 2\beta \neq 20$ Given: $\alpha + (2\alpha + 2\beta) = 20$ ⇒ $\alpha + 2(\alpha + \beta) = 20$ ⇒ $\left[\text{using}\left(1\right)\right]$ $\alpha + 2(6) = 20$ ⇒ $\alpha + 12 = 20$ \Rightarrow $\alpha = 20 - 12$ ⇒ $\alpha = 8$ \Rightarrow Substituting $\alpha = 8$ in (1), we get $8 + \beta = \sqrt{6}$ 8 $B \doteq 6$ ⇒ \Rightarrow Further, substituting $\alpha = 8$ and $\beta = -2$ in (2), we obtain 22. Solve for x and y. 4x +3 x

Solution. We have

$$4x + \frac{y}{3} = \frac{8}{3}$$

 $\frac{x}{2} + \frac{3y}{4} = -\frac{5}{2}$

and

Multiplying (2) by 8, we get

$$8\left(\frac{x}{2} + \frac{3y}{4}\right) = 8 \times \left(-\frac{5}{2}\right)$$
$$4x + 6y = -20$$

⇒

Subtracting (1) from (3), we get

 $\frac{x}{2} + \frac{3}{4}(-4) = -\frac{5}{2}$

 $\frac{x}{2} - 3 = -\frac{5}{2}$

 $\frac{x}{2} = -\frac{5}{2} + 3$

 $\frac{x}{2} = \frac{5+6}{2}$

 $\Rightarrow \qquad x = 1 \text{ and } y = -4$

I

Or

The sum of the numerator and the denominator of a fraction is 8. If 3 is added to both the numerator and the denominator, the fraction becomes $\frac{3}{4}$. Find the fraction.

Solution. Let the fraction be $\frac{x}{-}$.

It is given that : the sum of the numerator and the denominator of a fraction is 8. \therefore x + y = 8 ...(1)

...(1)

Also, it is given that : if 3 is added to both the numerator and the denominator, the fraction becomes $\frac{3}{4}$.

$$\frac{4}{y+3} = \frac{3}{4}$$

$$\Rightarrow 4x + 12 = 3y + 9$$

$$\Rightarrow 4x - 3y = -3$$
Multiplying (1) by 3, we get
 $3x + 3y = 24$
Adding (2) and (3), we get
 $(4x - 3y) + (3x + 3y) = -3 + 24$

$$\Rightarrow 4x + 3x = 21$$

$$\Rightarrow x = 3$$
Substituting $x = 3$ in (1), we get
 $3 + y = 8$

$$\Rightarrow y = 8 - 3 = 5$$
Hence, the fraction is $\frac{3}{5}$.
23. Prove that $\frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} = \tan^2 \theta - \cot^2 \theta$.
Solution. We have
L.H.S. = $\frac{\tan \theta - \cot \theta}{\sin \theta \cos \theta} \times \frac{(\tan \theta + \cot \theta)}{(\tan \theta + \cot \theta)}$. [Multiplying and dividing by $\tan \theta + \cot \theta$]

$$= \frac{(\tan \theta - \cot \theta)}{\sin \theta \cos \theta} \times \frac{(\tan \theta + \cot \theta)}{(\tan \theta + \cot \theta)}$$
.

$$= \frac{\tan^2 \theta - \cot^2 \theta}{\sin \theta \cos \theta + \sin \theta \cos \theta \cot \theta}$$

$$= \frac{\tan^2 \theta - \cot^2 \theta}{\sin^2 \theta + \cos^2 \theta}$$

$$= \frac{\tan^2 \theta - \cot^2 \theta}{\sin^2 \theta + \cos^2 \theta}$$

$$= \frac{\tan^2 \theta - \cot^2 \theta}{\sin^2 \theta + \cos^2 \theta}$$

$$= \frac{\tan^2 \theta - \cot^2 \theta}{\sin^2 \theta + \cos^2 \theta}$$

$$= \tan^2 \theta - \cot^2 \theta$$

$$= \tan^2 \theta + \cos^2 \theta = 1$$

24. In figure, $\triangle ABC$ is right-angled at B, BC = 7 cm and AC - AB = 1 cm. Find the value of cos $A - \sin A$.

25. In figure, P and Q are the mid-points of the sides CA and CB respectively of $\triangle ABC$ right-angled at C. Prove that $4(AQ^2 + BP^2) = 5AB^2$.

point O. If $AB \neq 2CD$, find the ratio of the areas of triangles AOB and COD.

Solution. ABCD is a trapezium in which O is the point of intersection of the diagonals AC and BD and $AB \parallel CD$. In triangles AOB and COD, we have $\angle AOB = \angle COD$ [Vertically opposite $\angle s$] and $\angle OAB = \angle OCD$ [Alternate $\angle s$] So, by AA-criterion of similarity of triangles, we have $\angle AOB \sim \triangle COD$

: The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

—	$\operatorname{ar}(\Delta COD) = \overline{CD^2}$	Ĺ
⇒	$\frac{\operatorname{ar}\left(\Delta AOB\right)}{\operatorname{ar}\left(\Delta COD\right)} = \frac{(2CD)^2}{CD^2}$	•
⇒	$\frac{\operatorname{ar}\left(\Delta AOB\right)}{\operatorname{ar}\left(\Delta COD\right)} = \frac{4CD^2}{CD^2}$	
⇒	$\frac{\operatorname{ar}\left(\Delta AOB\right)}{\operatorname{ar}\left(\Delta COD\right)}=\frac{4}{1}$	<i>•</i> .

ar (ΔAOB)

 AB^2

[:: AB = 2CD (given)]

Thus, the ratio of the areas of triangles AOB and COD is 4:1. 27. The mean of the following frequency distribution is 50. Find the value of p.

Classes	0 – 20	20 - 40	40 - 60	.60 - 80	80 - 100
Frequency	17	28	32	p	19
Solution.	Calcula	ation of M	ean		
Classes	Class-mark (x_i)	· Kr	equency (f)		$f_i x_i$
0 - 20	10		17	[170
20 - 40	30		28		840
40 - 60	50		32		1600
60 - 80	. 70	\land	p		70p
80 - 100	90		19		1710
Total		<i>n</i> =	$\Sigma f_i = 96 + p$	$\Sigma f_i x_i = 4$	4320 + 70p

Using the formula :

⇒ ⇒

$$Mean = \frac{\sum f_i x_i}{24}$$
(given) 50 = 4320 + 70p
4800 + 50p = 4320 + 70p
4800 - 4320 = 70p - 50p
20p = 480
p = 24.

28. Compute the median for the following cumulative frequency distribution :

Weight Less	Less	Less	Less	Less	Less	Less	Less
in than	than	than	than	than	than	than	than
(kg) 38	40	42	44	46	48	50	52
Number of 0 students	3	5	9	14	28	32	35

Solution.

Calculation of Median

Weight in (kg)	No. of students (f)	Cumulative frequency (cf)
Less than 38	0	. 0
38 - 40	3	3 1
40 - 42	2 .	5
42 - 44	4	9
44 - 46	5	14
46 – 48	14	28
48 - 50	4	
. 50 – 52	3	

Here, $\frac{n}{2} = \frac{35}{2} = 17.5$. Now, 46 - 48 is the class whose cumulative frequency is 28 is greater

than $\frac{n}{2}$, *i.e.*, 17.5.

 \therefore 46 – 48 is the median class. From the table, f = 14, cf = 14, h = 2Using the formula :

Median =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

= $46 + \left(\frac{17.5 - 14}{14}\right) \times 2$
= $46 + \frac{3.5}{14} \times 2$
= $46 + \frac{1}{2}$
= $46 + 0.5$
= 46.5

Find the missing frequencies in the following frequency distribution table, if N = 100 and median is 32.

Marks obtained 0-10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	Total
No. of students 10	• ?	25	30	?	10	100

Solution. Let x and y be the missing frequencies of classes 10 - 20 and 40 - 50 respectively.

Calculation of Median

Marks obtained	No. of students	Cumulative Frequency
0-10	10	10
10 - 20	x	10 + x
20 - 30 ⁻	25	35 + 🗶 🔨
30 - 40	30	65 + 🛪 🛛 🔪
40 - 50	y .	65 + x + y
50 – 60	10	75+x+y
Total	100	

...(1)

It is given that, n = 100 = Total Frequency

$$\therefore \quad 75 + x + y = 100$$

x + y = 100 - 75⇒

x + y = 25⇒

The median is 32 (given), which lies in the class 30 - 40

h

l = lower limit of median class = 30So,

f = frequency of median class = 30

cf = cumulative frequency of class preceding the median dass = 35 + x

h = class size = 10

Using the formula :

$$Median = l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times$$

 $32 = 30 + \left(\frac{50 - (35)}{30}\right)$

- 6

 \Rightarrow

 \Rightarrow ⇒

x = 9Substituting x = 9 in (1), we get $+ \nu \ge 25$

 $32 - 30 = \frac{15 - x}{3}$

 $2 \times 3 = 15 - x$ 6 = 15 - xx = 45

Hence, the missing frequencies of the classes 10 - 20 and 40 - 50 are 9 and 16 respectively.

Section 'D'

Question numbers 29 to 34 carry 4 marks each. 29. Divide $30x^4 + 11x^3 - 82x^2 - 12x + 48$ by $(3x^2 + 2x - 4)$ and verify the result by division algorithm.

Solution. We have $p(x) = 30x^4 + 11x^3 - 82x^2 - 12x + 48$ and $g(x) = 3x^2 + 2x - 4$ Now we divide p(x) by g(x) to get q(x) and r(x).

$$3x^{2} + 2x - 4) \underbrace{30x^{4} + 11x^{3} - 82x^{2} - 12x + 48}_{30x^{4} + 20x^{3} - 40x^{2}} = 10x^{2}$$

$$\underbrace{3x^{2} + 2x - 4}_{-\frac{30x^{4} + 20x^{3} - 40x^{2}}{-\frac{9x^{3} - 42x^{2} - 12x + 48}{-\frac{9x^{3} - 6x^{2} + 12x}{-\frac{9x^{3} - 6x^{2} + 12x}{-\frac{9x^{3} - 6x^{2} - 24x + 48}{-\frac{36x^{2} - 24x + 48}{-\frac{36x^{2} - 24x + 48}{-\frac{9x^{3} - 6x^{2} - 24x + 48}{-\frac{9x^{3} - 24x + 28}{-\frac{9x^{3} - 28}{-\frac{9x^{3} - 28}{-\frac{9x^{3} -$$

 $= 30x^{4} - 9x^{3} - 36x^{2} + 20x^{3} - 6x^{2} - 24x + 48$ = 30x⁴ + 11x³ - 82x² - 12x + 48 30. If a line is drawn parallel to one side of a triangle to intersect the other two

sides in distinct points, prove that the other two sides are divided in the same ratio. Solution. Given: A triangle ABC in which a line parallel to BC intersects other two sides AB and AC at D and E respectively.

To prove :
$$\frac{AD}{DB} = \frac{AE}{EC}$$
.

Construction : Join BE, CD and draw DM LAC and EN AB.

Proof : Since EN is perpendicular to AB, therefore, EN is the height of triangles ADE and BDE.

ar
$$(\Delta ADE) = \frac{1}{2} (\text{base} \times \text{height})$$

 $-\frac{1}{2} (AD \times EN)$

and

....

ar
$$(\Delta BDE) = \frac{1}{2}$$
 (base × height

$$= \frac{1}{2} (BB \times EN)$$

$$\frac{\operatorname{ar}(ABDE)}{\operatorname{ar}(ABDE)} = \frac{\frac{1}{2}}{1} (BB \times EN)$$

$$2 \operatorname{ar}(AADE) = AD$$

$$\Rightarrow \qquad \frac{AR(\Delta ADE)}{ar(\Delta BDE)} = \frac{AD}{DB}$$

Similarly, $\frac{ar(\Delta ADE)}{ar(\Delta DEC)} = \frac{\frac{1}{2}(AE \times DM)}{\frac{1}{2}(EC \times DM)} = \frac{AE}{EC}$

...(1)

...(2)

[using (1) and (2)]

...(3)

...(4)

Note that $\triangle BDE$ and $\triangle DEC$ are on the same base DE and between the same parallels BC and DE.

 $ar(\Delta BDE) = ar(\Delta DEC)$

From (4) and (5), we have

 $\frac{\operatorname{ar}(\Delta ADE)}{\operatorname{ar}(\Delta BDE)} = \frac{AE}{EC}$

Again from (3) and (6), we have

 $\frac{AD}{DB} = \frac{AE}{EC}$ $\frac{AD}{DB} = \frac{AE}{EC}.$

Hence,

...

Or

Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle. Solution. Given : A triangle ABC such that :

 $AC^2 = AB^2 + BC^2$

To prove : $\triangle ABC$ is a right-angled at *B*, *i.e.*, $\angle B = 90^{\circ}$. **Construction** : Construct a $\triangle PQR$ such that $\angle Q = 90^{\circ}$ and PQ = AB and QR = BC.

[By Pythagoras Theorem] ...(1) [As PQ = AB and QR = BC] ...(2)

...(3)

 $PR^2 = PQ^2 + QR^2$ $PR^2 = AB^2 + BC^2$ \Rightarrow $AC^2 = AB^2 + BC^2$ But From (1) and (2), we have $PR^2 = AC^2$ PR = AC \Rightarrow Now in $\triangle ABC$ and $\triangle PQR$, we have AB = PQ $BC \neq QR$ AC = PRind $\Delta ABC \cong \Delta PQR$ $\angle B = \angle Q = 90^{\circ}$ $\angle B = 90^{\circ}$. Hence.

[using (3)] [SSS congruency] [CPCT]

...(5)

(6)

31. Without using trigonometric tables, evaluate the following :

 $\frac{\sec 37^{\circ}}{\csc 53^{\circ}} + 2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \cot 75^{\circ} \cot 65^{\circ} - 3(\sin^2 18^{\circ} + \sin^2 72^{\circ})$

Solution. We have $\frac{\sec 37^\circ}{\csc 53^\circ}$ + 2 cot 15° cot 25° cot 45° cot 75° cot 65° – 3(sin² 18° + sin² 72°) $=\frac{\sec 37^{\circ}}{\csc (90^{\circ}-37^{\circ})}+2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \cot (90^{\circ}-15^{\circ}) \cot (90^{\circ}-25^{\circ})$ $-3[\sin^2 18^\circ + \sin^2 (90^\circ - 18^\circ)]$ $=\frac{\sec 37^{\circ}}{\sec 37^{\circ}} + 2 \cot 15^{\circ} \cot 25^{\circ} \cot 45^{\circ} \tan 15^{\circ} \tan 25^{\circ} - 3(\sin^2 18^{\circ} + \cos^2 18^{\circ})$ [:: cosec $(90^\circ - \theta) = \sec \theta$, cot $(90^\circ - \theta) = \tan \theta$ and $\sin (90^\circ - \theta) = \cos \theta$] $\sin^2 \theta + \cos^2 \theta = 1$ = $1 + 2(\cot 15^{\circ} \cdot \tan 15^{\circ})(\cot 25^{\circ} \cdot \tan 25^{\circ}) \cot 45^{\circ} - 3(1)$ \therefore cot θ tan $\theta = 1$ and cot $45^\circ = 1$ = 1 + 2(1)(1)(1) - 3= 1 + 2 - 3**≃** 0. 0r Prove that: $\frac{\tan \theta}{1 - \cot \theta} + \frac{c}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$ Solution. We have L.H.S. = $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta}$ $\sin \theta$ $\cos \theta$ $1 - \frac{\sin \theta}{2}$ $1 - \frac{\cos \theta}{\sin \theta}$ cost $(\sin\theta/\cos\theta)$ $(\cos \theta / \sin \theta)$ $(\sin \theta - \cos \theta)/\sin \theta$ $(\cos \theta - \sin \theta)/\cos \theta$ $\sin^2 \theta$ $\cos^2 \theta$ $\cos \theta(\sin \theta - \cos \theta) + \frac{1}{\sin \theta(\cos \theta - \sin \theta)}$ $\cos^2 \theta$ $\cos \theta(\sin \theta - \cos \theta) = \sin \theta(\sin \theta - \cos \theta)$ $\frac{1}{(\sin\theta - \cos\theta)} \left[\frac{\sin^2\theta}{\cos\theta} - \frac{\cos^2\theta}{\sin\theta} \right]$ $=\frac{1}{(\sin\theta-\cos\theta)}\left[\frac{\sin^3\theta-\cos^3\theta}{\sin\theta\cos\theta}\right]$

$$= \frac{(\sin \theta - \cos \theta)(\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta)}{(\sin \theta - \cos \theta)(\sin \theta \cos \theta)} \qquad [\because a^3 - b^3 = (a - b)(a^2 + b^2 + ab)]$$

$$= \frac{\sin^2 \theta + \cos^2 \theta + \sin \theta \cos \theta}{\sin \theta \cos \theta}$$

$$= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta}$$

$$= \frac{1 + \sin \theta \cos \theta}{\sin \theta \cos \theta} + \frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}$$

$$= \sec \theta \csc \theta + 1$$

$$= R.H.S.$$
32. If 2 cos $\theta - \sin \theta = x$ and cos $\theta - 3 \sin \theta = y$. Prove that $2a^2 + y^2 - 2xy = 5$.
Solution. Given
2 cos $\theta - \sin \theta = x$...(1) and cos $\theta - 3 \sin \theta = y$. (2)
L.H.S. $= 2x^2 + y^2 - 2xy$
 $= x^2 + (x^2 + y^2 - 2xy)$
 $= x^2 + (x - y)^2$
 $= (2 \cos \theta - \sin \theta)^2 + [(2 \cos \theta - \sin \theta) + (-\sin \theta + 3 \sin \theta)]^2$ [using (1) and (2)]
 $= (2 \cos \theta - \sin \theta)^2 + (\cos \theta + 2 \sin \theta)^4 + (-\sin \theta + 3 \sin \theta)]^2$
 $= (4 \cos^2 \theta + \sin^2 \theta - 4 \cos \theta \sin \theta) + (\cos^2 \theta + 4 \sin^2 \theta + 4 \cos \theta \sin \theta)$
 $= (4 \cos^2 \theta + \sin^2 \theta + 0)$
 $= 5 (cos^2 \theta + \sin^2 \theta + 0)$
 $= 5 (1)$ [$\because \cos^2 \theta + \sin^2 \theta = 1$]
 $= 5$
= R.H.S.

33. Check graphically whether the pair of linear equations 4x - y - 8 = 0 and 2x - 3y + 6 = 0 is consistent. Also, find the vertices of the triangle formed by these lines with the x-axis.

Solution. We have

32.

$$x - y - 8 = 0$$

$$y = 4x - 8$$
Table of $y = 4x - 8$

$$x - 8$$

and 2x - 3y + 6 = 03y = 2x + 6⇒ $y = \frac{2x+6}{3}$ Table of $y = \frac{2x+6}{3}$ 0 - 3 3 ٠x $\mathbf{2}$ 0 4 y

D

E

C

Take XOX' and YOY' as the axes of co-ordinates. Plotting the points A(0, -8), B(2, 0), C(3, 4) and joining them by a line, we get a line 'l' which is the graph of 4x - y - 8 = 0.

Further, plotting the point D(0, 2), E(-3, 0), C(3, 4) and joining them by a line, we get a line *m* which is the graph of 2x - 3y + 6 = 0.

From the graph of the two equations, we find that the two lines l and m intersect each other at the point C(3, 4).

Yes, the pair of linear equations 4x - y - 8 = 0 and 2x - 3y + 6 = 0 is consistent. \therefore x = 3, y = 4 is the solution.

The first line 4x - y - 8 = 0 meets the x-axis at the points B(2, 0).

The second line 2x - 3y + 6 = 0 meets the x-axis at the point E(-3, 0)

Hence, the vertices of the triangle ECB formed by the given lines with the x-axis are E(-3, 0), C(3, 4) and B(2, 0) respectively.

34. The following table shows the ages of 100 persons of a locality.

Age (years)	Number of persons
0-10	5
) 10 – 20	15
20 - 30	20
30 - 40	23
40 - 50	17
50 – 60	11
60 – 70	• 9

Draw the less than ogive and find the median.

Solution. We prepare the cumulative frequency table by less than type method as given below :

Age (years)	Number of persons (Frequency)	Age (years) less than	Cumulative frequency
0-10	5 .	10	5
10-20	15	20	20
20 - 30	20	. 30	40
30 - 40	23	40	63
, 40-50	17	50	80
50 - 60	11	60	/ 91
60 - 70	· 9	70	100

Here 10, 20, 30, 40, 50, 60, 70 are the upper limits of the respective class-intervals less than 0 - 10, 10 - 20, 20 - 30, 30 - 40, 40 - 50, 50 - 60, 60 - 70. To represent the data in the table graphically, we mark the upper limits of the class-intervals on the horizontal axis (x-axis) and their corresponding cumulative frequencies on the vertical axis (y-axis), choosing a convenient scale other than the class intervals, we assume a class interval -10 - 0 prior to the first class interval 0 - 10 with zero frequency.

Now, we plot the points (0, 0), (10, 5), (20, 20), (30, 40), (40, 63), (50, 80), (60, 91) and (70, 100) on a graph paper and join them by a free hand smooth curve to get the "less than ogive." (see figure)

Locate $\frac{n}{2} = \frac{100}{2} = 50$ on *y*-axis.

From this point, draw a line parallel to x-axis cutting the curve at a point. From this point, draw a perpendicular to x-axis. The point of intersection of this perpendicular with x-axis determine the median age (see figure) *i.e.*, median age is **34.5 years** (approx).