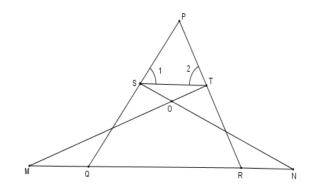
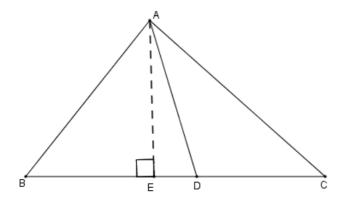
Class X Mathematics Sample Question Paper 2018-19

Time allowed: 3 Hours Max. Marks: 80


General Instructions:

- 1. All the questions are compulsory.
- 2. The questions paper consists of 30 questions divided into 4 sections A, B, C and D.
- 3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.
- 4. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- 5. Use of calculators is not permitted.

	Section-A	
1.	Find the value of a, for which point P ($\frac{a}{3}$, 2) is the mid-point of the line segment joining the points Q(-5,4) and R(-1,0).	1
2.	Find the value of k, for which one root of the quadratic equation $kx^2-14x+8=0$ is 2.	1
	Find the value(s) of k for which the equation $x^2 + 5kx + 16 = 0$ has real and equal roots.	-
3.	Write the value of $\cot^2 \theta - \frac{1}{\sin^2 \theta}$	1
	OR	
	If $sin\theta = cos\theta$, then find the value of $2tan\theta + cos^2\theta$	
4.	If nth term of an A.P. is (2n+1), what is the sum of its first three terms?	1
5.	In figure if AD= 6cm, DB=9cm, AE = 8cm and EC = 12cm and \angle ADE = 48 ⁰ . Find \angle ABC	1
	D 48° E C	
6.	After how many decimal places will the decimal expansion of $\frac{23}{2^4 \times 5^3}$ terminate?	1


	Section-B https://jsuniltutorial.weebly.com/	/
7.	The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, find the other number.	2
	OR	
	Show that $7 - \sqrt{5}$ is irrational, give that $\sqrt{5}$ is irrational.	
8.	Find the 20 th term from the last term of the AP 3,8,13,,253	2
	OR	
	If 7 times the 7 th term of an A.P is equal to 11 times its 11 th term, then find its 18 th term.	
9.	Find the coordinates of the point P which divides the join of A(-2,5) and B(3,-5) in the ratio 2:3	2
10.	A card is drawn at random from a well shuffled deck of 52 cards. Find the probability of getting neither a red card nor a queen.	2
11.	Two dice are thrown at the same time and the product of numbers appearing on them is noted. Find the probability that the product is a prime number	2
12.	For what value of p will the following pair of linear equations have infinitely many solutions $ (p-3)x+3y=p \\ px+py=12 $	2
	Section-C	
13.	Use Euclid's Division Algorithm to find the HCF of 726 and 275.	3
14.	Find the zeroes of the following polynomial: $5\sqrt{5}x^2+30x+8\sqrt{5}$	3
15.	Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in same direction they meet in 8 hours and if they move towards each other they meet in 1 hour 20 minutes. Find the speed of cars.	3
16.	The points A(1,-2), B(2,3), C (k,2) and D(-4,-3) are the vertices of a parallelogram. Find the value of k.	3
	OR	
	Find the value of k for which the points (3k-1,k-2), (k,k-7) and (k-1,-k-2) are collinear.	
17.	Prove that $\cot \theta - \tan \theta = \frac{2\cos^2 \theta - 1}{\sin \theta \cos \theta}$	3
	OR Prove that $sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) - sac\theta + cosac\theta$	
	Prove that $sin\theta(1 + tan\theta) + cos\theta(1 + cot\theta) = sec\theta + cosec\theta$	
18.	The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is a tangent to the smaller circle touching it at D and intersecting the larger circle at P on producing. Find the length of AP.	3

19. In figure $\angle 1 = \angle 2$ and $\Delta NSQ \cong \Delta MTR$, then prove that $\Delta PTS \sim \Delta PRQ$.

OR

In $\triangle ABC$, if AD is the median, then show that $AB^2 + AC^2 = 2(AD^2 + BD^2)$

20. Find the area of the minor segment of a circle of radius 42cm, if length of the corresponding arc is 44cm.

3

21. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tank will rise by 21 cm.

OR

A solid sphere of radius 3 cm is melted and then recast into small spherical balls each of diameter 0.6cm. Find the number of balls.

The table shows the daily expenditure on grocery of 25 households in a locality. Find the 22. modal daily expenditure on grocery by a suitable method.

3

Daily	100-150	150-200	200-250	250-300	300-350
Expenditure					
(in Rs.)					
No of	4	5	12	2	2
households					

		,	Section-D	jsuniltutorial.weebly.com	
23.		s 2 hours less for a journey of 30 Find the usual speed of the train	<u>=</u>	d by 5 km/h from its	4
			OR		_
	Solve for x:	$\frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}, [a \neq 0, b]$	_]	
24.	An AP consiterm.	ists of 50 terms of which 3 rd term	m is 12 and the last term is 1	106. Find the 29 th	1
25.	Prove that in of other two	a right angled triangle square of sides.	of the hypotenuse is equal to	sum of the squares	,
26.		$\frac{3}{5}$ of the corresponding sides		gle similar to $\triangle ABC$	
27.	coming direc	ne top of a vertical observation octly towards it. If it takes 12 min ow long will the car take to read	nutes for the angle of depre	ssion to change from	
	The angle of	f elevation of a cloud from a poi	OR nt 60 m above the surface o	of the water of a lake	
28.	is 30° and the Find the height	f elevation of a cloud from a point angle of depression of its shad ght of the cloud from the surface of the following data is 525. Fin	nt 60 m above the surface of low from the same point in e of water.	water of lake is 60°.	
228.	is 30° and the Find the height	e angle of depression of its shace	nt 60 m above the surface of low from the same point in e of water.	water of lake is 60°.	
228.	is 30° and the Find the height	e angle of depression of its shad ght of the cloud from the surface of the following data is 525. Fin	nt 60 m above the surface of low from the same point in the e of water. Indeed the values of x and y if the content in the co	water of lake is 60°.	
228.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin	nt 60 m above the surface of low from the same point in e of water. Indeed the values of x and y if the surface of the same point in the control of the same point in the sam	water of lake is 60°.	
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval	nt 60 m above the surface of low from the same point in e of water. Indeed the values of x and y if the surface of the same point in the control of the same point in the control of the same point in the same p	water of lake is 60°.	
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval 0-100 100-200	nt 60 m above the surface of low from the same point in e of water. Indeed the values of x and y if the surface of the same point in the of water. The same point in the sam	water of lake is 60°.	
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval 0-100 100-200 200-300	nt 60 m above the surface of low from the same point in e of water. Indeed the values of x and y if the same point in the control of the con	water of lake is 60°.	
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval 0-100 100-200 200-300 300-400	nt 60 m above the surface of low from the same point in e of water. Independent of the same point in the e of water. The point of the same point in the e of water. The point of the same point in the e of water. The point of the surface of the surface of the same point in the e of water. The point of the e	water of lake is 60°.	
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval 0-100 100-200 200-300 300-400 400-500	nt 60 m above the surface of low from the same point in e of water. Independent of the same point in the e of water. Frequency 2 5 x 12 17	water of lake is 60°.	
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval 0-100 100-200 200-300 300-400 400-500 500-600	nt 60 m above the surface of low from the same point in e of water. Independent of the same point in the end of water. Frequency 2 5 x 12 17 20	water of lake is 60°.	-
28.	is 30° and the Find the height	e angle of depression of its shadght of the cloud from the surface of the following data is 525. Fin Class Interval 0-100 100-200 200-300 300-400 400-500 500-600 600-700	nt 60 m above the surface of low from the same point in e of water. Independent of the values of x and y if the same point in the of water. Frequency 2 5 x 12 17 20 Y	water of lake is 60°.	

0-10 10-20 20-30	Number of students 5 3	
10-20	-	
	3	
20-30		
	4	
30-40	3	
40-50	4	
50-60	4	
60-70	7	
70-80	9	
l l		
80-90	7	

If $sec\theta + tan\theta = p$, then find the value of $cosec\theta$.

30.

4

Class: X Mathematics Marking Scheme 2018-19

Time allowed: 3hrs Maximum Marks: 80

Q No	SECTION A	Marks
1	$\left(\frac{-5+(-1)}{2}, \frac{4+0}{2}\right) = \left(\frac{a}{3}, 2\right)$ $\frac{a}{3} = \frac{-6}{2} \implies a = -9 \implies$	1
2	$4K - 28 + 8 = 0$ $K = 5$ OR For roots to be real and equal, $b^2 - 4ac = 0$ $\implies (5k)^2 - 4 \times 1 \times 16 = 0$ $k = \pm \frac{8}{5}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array}$
3	$\cot^{2}\theta - \frac{1}{\sin^{2}\theta} = \cot^{2}\theta - \csc^{2}\theta$ $= -1$ OR $\sin\theta = \cos\theta \theta = 45^{\circ}$ $\therefore 2\tan\theta + \cos^{2}\theta = 2 + \frac{1}{2} = \frac{5}{2}$	1 1/2 1/2
4	$a_1 = 3, a_3 = 7$ $s_3 = \frac{3}{2}(3 + 7) = 15$	1/ ₂ 1/ ₂
5	$\frac{AD}{DB} = \frac{AE}{EC} \qquad DE \parallel BC$ $\implies \angle ADE = \angle ABC = 48^{\circ}$	1/ ₂ 1/ ₂
6	4 places	1
	SECTION B	
7	HCF × LCM = Product of two numbers $9 \times 360 = 45 \times 2^{\text{nd}}$ number 2^{nd} number = 72	1
	OR	

	Let us assume, to the contrary that $7 - \sqrt{5}$ is irrational	
	$7 - \sqrt{5} = \frac{p}{q}$, Where p & q are co-prime and $q \neq 0$	
	7	1
	$=\sqrt{5} = \frac{7q - p}{q}$	
	$\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a contradiction	1
	Hence $7 - \sqrt{5}$ is irrational	1
	Hence $I = \sqrt{5}$ is irrational	
0	20th 4 from 41 1 1 (m 1) 1	1,
8	20^{th} term from the end = $l - (n-1)d$	1/2
	$= 253-19 \times 5$	1
	= 158	$\begin{vmatrix} 1 \\ 1/2 \end{vmatrix}$
		, 2
	OR	
	$7a_7 = 11a_{11} \implies 7(a+6d) = 11(a+10d)$	1
	$\implies a + 17d = 0 : a_{18} = 0$	1
9	$X = \frac{6-6}{5} = 0$	1
	$Y = \frac{-10+15}{5} = 1$	
	$r = \frac{1}{5} = 1$	1
4.0		
10	Probability of either a red card or a queen	1
	$=\frac{26+2}{52}=\frac{28}{52}$	
	P(neither red car nor a queen) = $1 - \frac{28}{52}$	1
	52 24 7	
	$=\frac{24}{52}or \frac{7}{13}$	
	02 -0	
11	Total number of outcomes = 36	1
	Favourable outcomes are (1,2), (2,1), (1,3), (3,1), (1,5), (5,1) i.e. 6	1
	Required probability = $\frac{6}{36}$ or $\frac{1}{6}$	
	36 6	
12	For infinitely many solutions	1/
12	p-3 3 -p	1/2
	${p} = {p} = {-12}$	
	$\frac{p-3}{p} = \frac{3}{p} = \frac{-p}{-12}$ $\implies p^2 - 3p = 3p \qquad \text{or} \qquad 12 \times 3 = p^2$	1
	$\implies p^2 - 6p = 0 \qquad \text{or} \qquad p = \pm 6$	
	p = 0.6	
	$\Longrightarrow p = 6$	
	SECTION: C	
	SECTION: C	
13	By Euclid's Division lemma	6 ×
13	$726 = 275 \times 2 + 176$	1 /
	$275 = 176 \times 1 + 99$	- /2 =
	$176 = 99 \times 1 + 77$	3
	$99 = 77 \times 1 + 22$	
	$99 = 77 \times 1 + 22$ $77 = 22 \times 3 + 11$	
	$77=22 \times 3 + 11$ $22 = 11 \times 2 + 0$	
	$422 = 11 \times 2 + 0$ $427 = 11$ $427 = 11$	
	1101 – 11	

14	$5\sqrt{5}x^2 + 30x + 8\sqrt{5}$ $= 5\sqrt{5}x^2 + 20x + 10x + 8\sqrt{5}$	1
	$= 5x(\sqrt{5}x + 4) + 2\sqrt{5}(\sqrt{5}x + 4)$	
	$= (\sqrt{5}x + 4) (5x + 2\sqrt{5})$ $-4 \qquad -4\sqrt{5} \qquad -2\sqrt{5}$	1
	Zeroes are $\frac{-4}{\sqrt{5}} = \frac{-4\sqrt{5}}{5}$ and $\frac{-2\sqrt{5}}{5}$	1
15	Let the speed of car at A be x km/h	1
	And the speed of car at B be y km/h Case 1 $8x-8y = 80$	
	x-y = 10	
	Case 2 $\frac{4}{3}x + \frac{4}{3}y = 80$ x+y = 60	1
	on solving $x=35$ and $y=25$ Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively.	1
	Thence, speed of cars at A and B are 33 km/n and 23 km/n respectively.	
16	(-4,-3) D C (K,2)	11/2
	A (1,-2) B (2,3)	
	Diagonals of parallelogram bisect each other ⇒ midpoint of AC = midpoint of BD	1/2
	$(\frac{1+k}{2}, \frac{-2+2}{2}) = (\frac{-4+2}{2}, \frac{-3+3}{2})$	1
	$\implies \frac{1+k}{2} = \frac{-2}{2}$ $\implies k = -3$	1
	k = -3	
	OR	1
	For collinearity of the points, area of the triangle formed by given Points is zero.	1
	$\Rightarrow \frac{1}{2} \{ (3k-1)(k-7+k+2) + k(-k-2-k+2) + (k-1)(k-2-k+2) \} = 0$	1
	\implies {(3k - 1)(2k - 5) - 2k ² + 5k - 5} = 0	1
	$\Rightarrow 4k^2-12k = 0$ $\Rightarrow k = 0, 3$	1
17	LHS = $\cot \theta$ - $\tan \theta$	1
1,	$\frac{\cos\theta}{-\frac{\sin\theta}{-\frac{\sin\theta}{-\frac{\cos\theta}{-$	
	$ \begin{array}{l} -\sin\theta & \cos\theta \\ = \frac{\cos^2\theta - \sin^2\theta}{\sin\theta\cos\theta} \end{array} $	1/2
	$=\frac{\cos^2\theta - 1 + \cos^2\theta}{\sin\theta \cos\theta}$	1
	$= \frac{2\cos^2\theta - 1}{\sin\theta\cos\theta} = RHS$	1/2
	OR	-

LHS = $\sin\theta(1 + \tan\theta) + \cos\theta(1 + \cot\theta)$ = $\sin\theta\left(1 + \frac{\sin\theta}{\cos\theta}\right) + \cos\theta\left(1 + \frac{\cos\theta}{\sin\theta}\right)$ = $\sin\theta\left(\frac{\cos\theta + \sin\theta}{\cos\theta}\right) + \cos\theta\left(\frac{\sin\theta + \cos\theta}{\sin\theta}\right)$ = $(\cos\theta + \sin\theta) \left(\frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}\right)$ = $\frac{\cos\theta + \sin\theta}{\cos\theta\sin\theta} = \csc\theta + \sec\theta = \text{RHS}$ 1 SECTION: E	
$= \sin\theta \left(\frac{\cos\theta + \sin\theta}{\cos\theta}\right) + \cos\theta \left(\frac{\sin\theta + \cos\theta}{\sin\theta}\right)$ $= (\cos\theta + \sin\theta) \left(\frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}\right)$ $= \frac{\cos\theta + \sin\theta}{\cos\theta\sin\theta} = \csc\theta + \sec\theta = \text{RHS}$ SECTION: E 18	
$= (\cos\theta + \sin\theta) (\frac{\sin^2\theta + \cos^2\theta}{\cos\theta \sin\theta})$ $= \frac{\cos\theta + \sin\theta}{\cos\theta \sin\theta} = \csc\theta + \sec\theta = \text{RHS}$ SECTION: E	
$= \frac{\cos\theta + \sin\theta}{\cos\theta \sin\theta} = \csc\theta + \sec\theta = \text{RHS}$ SECTION: E	
SECTION: E	
A O D B	
D	1
$\angle APB = 90^{0}$ (angle in semi-circle) $\angle ODB = 90^{0}$ (radius is perpendicular to tangent)	1/2
$\Delta ABP \sim \Delta OBD$	
	1
$\implies \frac{26}{13} = \frac{AP}{8}$ $\implies AP = 16cm$	
19	
$ \angle 1 = \angle 2 $ $ \Rightarrow PT=PS \dots (i) $	1
$\Delta NSQ \cong \Delta MTR$	
⇒ PR=PQ(ii)	1
From (i) and (ii) $\frac{PT}{PR} = \frac{PS}{PQ}$	*
Also /TDS = /DDO (common)	1
OR	

AD is median, So BD=DC. $AB^2 = AE^2 + BE^2$ $AC^2 = AE^2 + EC^2$ Adding both, $AB^2 + AC^2 = 2AE^2 + BE^2 + CE^2$ $= 2(AD^2 - ED^2) + (BD - ED)^2 + (DC + ED)^2$ $= 2AD^2 - 2ED^2 + BD^2 + ED^2 - 2BD \cdot ED + DC^2 + ED^2 + 2CD \cdot ED$ $= 2AD^2 + BD^2 + CD^2$ $= 2(AD^2 + BD^2)$ $= 2(AD^2 + BD^2)$ $r = 42cm$ $\frac{2\pi r\theta}{360^2} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^0$ Area of minor segment = area of sector – area of corresponding triangle $\pi^2 \theta = \sqrt{3} = 2$	1 1 1
$AB^2 = AE^2 + BE^2$ $AC^2 = AE^2 + BC^2$ $Adding both,$ $AB^2 + AC^2 = 2AE^2 + BE^2 + CE^2$ $= 2(AD^2 - ED^2) + (BD - ED)^2 + (DC + ED)^2$ $= 2AD^2 - 2ED^2 + BD^2 + ED^2 - 2BD \cdot ED + DC^2 + ED^2 + 2CD \cdot ED$ $= 2AD^2 + BD^2 + CD^2$ $= 2(AD^2 + BD^2)$ 20 $r = 42cm$ $\frac{2\pi r\theta}{360^\circ} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^0$ Area of minor segment = area of sector – area of corresponding triangle	1
$AB^{2}+AC^{2} = 2AE^{2}+BE^{2}+CE^{2}$ $= 2(AD^{2}-ED^{2})+(BD-ED)^{2}+(DC+ED)^{2}$ $= 2AD^{2}-2ED^{2}+BD^{2}+ED^{2}-2BD.ED+DC^{2}+ED^{2}+2CD.ED$ $= 2AD^{2}+BD^{2}+CD^{2}$ $= 2(AD^{2}+BD^{2})$ $20 \qquad r = 42cm$ $\frac{2\pi r\theta}{360^{\circ}} = 44$ $\theta = \frac{44\times360\times7}{2\times22\times42} = 60^{0}$ Area of minor segment = area of sector – area of corresponding triangle	
$\frac{2\pi r\theta}{360^{\circ}} = 44$ $\theta = \frac{44 \times 360 \times 7}{2 \times 22 \times 42} = 60^{\circ}$ Area of minor segment = area of sector – area of corresponding triangle	1
$= \frac{\pi r^2 \theta}{360^{\circ}} - \frac{\sqrt{3}}{4} r^2$ $= r^2 \left[\frac{22}{7} \times \frac{60}{360} - \frac{\sqrt{3}}{4} \right]$	1/2
$= 1 \left[\frac{1}{7} \times \frac{1}{360} - \frac{1}{4} \right]$ $= 42 \times 42 \left[\frac{11}{21} - \frac{\sqrt{3}}{4} \right]$ $= 42 \times 42 \times \left[\frac{44 - 21\sqrt{3}}{84} \right]$ $= 21 \left(44 - 21\sqrt{3} \right) \text{ cm}^2$	1/ ₂
Volume of water flowing through pipe in 1 hour $= \frac{22}{7} \times 15 \times 1000 \times \frac{7}{100} \times \frac{7}{100}$ $= 231 \text{ m}^3$	1
Volume of rectangular tank = $50 \times 44 \times \frac{21}{100}$ = $22 \times 21 \text{ m}^3$	1
Time taken to flow 231 m ³ of water = 1 hours $\therefore \text{ Time taken to flow } 22 \times 21 \text{ m}^3 \text{ of water} = \frac{1}{231} \times 22 \times 21 = 2 \text{ hours}$	1
OR	
Number of balls = $\frac{\text{Volume of solid sphere}}{\text{Volume of 1 spherical ball}}$	1
$=\frac{\frac{4}{3}\times\pi\times3\times3\times3}{\frac{4}{3}\times\pi\times0.3\times0.3\times0.3}$	1
= 1000	1

22	200-250 is the modal class	1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	1
	$=200+\frac{12-5}{24-5-2}\times 50$	$\frac{1}{2}$
	$= 200+20.59 = \text{Rs.} \ 220.59$	/ 2
	Section D	
	Section B	
23	Let the usual speed of the train be x km/h	2
	$\frac{300}{x} - \frac{300}{x+5} = 2$	
	$\Rightarrow x^2 + 5x - 750 = 0 (x + 30)(x - 25) = 0$	1
	$(x+30)(x-23) = 0$ $\Rightarrow x = -30,25$	1
	∴ Usual Speed of the train = 25 km/h	1
	OR	
	$\frac{1}{(a+b+x)} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$	1
	$\implies \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$	1
	$-ab = x^2 + (a+b)x$ $\implies x^2 + ax + bx + ab = 0$	1
	$\Rightarrow (x+a)(x+b) = 0$	_
	x=-a,-b	1
24	$n=50$, $a_3=12$ and $a_{50}=106$ a+2d=12 a+49d=106	1/ ₂
	on solving, d=2 and a= 8	1
	$a_{29} = a + 28d$	1/2
	$= 8+28\times 2 = 64$	1
25	Correct given, To prove, figure and construction	1 /
25	Correct given, 10 prove, figure and construction	1/ ₂ × 4 = 2
	Correct proof	2
26	Correct construction of $\triangle ABC$	1
	Correct construction of similar triangle	3

27 1 12x 1 Correct figure Let the speed of car be x m/ minutes 1/2 In $\triangle ABC$, 1 1/2 $\frac{\frac{h}{y} = \tan 45^0}{h = y}$ In $\triangle ABD$, $\frac{h}{y+12x} = \tan 30^0$ $\Rightarrow h\sqrt{3} = y+12x$ $y\sqrt{3} - y = 12x$ $y = \frac{12x}{\sqrt{3} - 1} = \frac{12x(\sqrt{3} + 1)}{2}$ $\Rightarrow y = 6x(\sqrt{3} + 1)$ Time taken from C to B = 6($\sqrt{3}$ + 1) minutes OR 1 1 h+60 **1**/2 Correct figure 1/2 In $\triangle ABE$, $\frac{h}{x} = \tan 30^{0}$ \implies x=h $\sqrt{3}$

	_	n surface of water	r = (60 + 60)m = 120m	
28	Class Interval	Frequency	cf	1
	0-100	2	2	
	100-200	5	7	
	200-300	X	7+x	
	300-400	12	19+x	
	400-500	17	36+x	
	500-600	20	56+x	
	600-700	у	56+x+y	
	700-800	9	65+x+y	
	800-900	7	72+x+y	
	900-1000	4	76+x+y	
	N=100 \Longrightarrow 76+x+y=100 $x+y=24$ Median = 525 \Longrightarrow 500 - 60 60-80 is the median class Median = $l + \frac{\frac{n}{2} - cf}{f} \times h$ \Longrightarrow 500 + $\left(\frac{50 - 36 - x}{20}\right) \times 100$ \Longrightarrow (14 - x) × 5 = 25 \Longrightarrow x = 9 from (1), y = 5.96	O = 525	(i)	1/ ₂ 1/ ₂ 1
		OR		

		Marks	Number of students	cf		
		0-10	5	5		
		10-20	3	8		
		20-30	4	12		
		30-40	3	15		
		40-50	3	18		
		50-60	4	22		
		60-70	7	29		
		70-80	9	38		
		80-90	7	45		
		90-100	8	53		
	Correct table Drawing correct Ogive Median=64					1 2 1
29	$r_1 = 15 \text{cm}$, $r_2 = 5 \text{cm}$ h = 24 cm $l = \sqrt{h^2 + (r_1 - r_2)^2}$ $= \sqrt{24^2 + 10^2} = 26 \text{cm}$					1
	Curved surface area of bucket = $\pi(r_1 + r_2)l$ = $\frac{22}{7} \times (15 + 5) \times 26$ = $\frac{22 \times 20 \times 26}{7}$ = $\frac{11440}{7}$ cm ² or 1634.3cm ²					1
						1
30	1. $Sec\theta + tan\theta = p$ $\frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta} = p$ $1 + \sin\theta = p\cos\theta$ $= p\sqrt{1 - \sin^2\theta}$					
	$(1+\sin\theta)^2 = p^2(1-\sin^2\theta)$ $1 + \sin^2\theta + 2\sin\theta = p^2 - p^2\sin^2\theta$ $(1+p^2)\sin^2\theta + 2\sin\theta + (1-p^2) = 0$ $D = 4 - 4(1+p^2)(1-p^2)$				1	
	$= 4 - 4(1 - p^4) = 4p^4$				1	
	$ Sin\theta = \frac{-2 \pm \sqrt{4p^4}}{2(1+p^2)} = \frac{-1 \pm p^2}{(1+p^2)} \\ = \frac{p^2 - 1}{p^2 + 1}, -1 $					1/2
	$\therefore Cosec \ \theta = \frac{p^2 + 1}{p^2 - 1} \ , -1$					1