## 10th Electricity - Remember these terms before solving Numerical problems

1. If a net charge Q , flows across any cross-section of a conductor in time t , then the current I , through the cross-section is
$\mathrm{I}=\mathrm{Q} / \mathrm{t}$
$\mathrm{Q}=\mathrm{It}$
2. The electric potential difference between two points in an electric circuit carrying some current is the work done to move a unit charge from one point to the other -

Potential difference (V) between two points = Work done/Charge
$\mathrm{V}=\mathrm{W} / \mathrm{Q}$
$W=V Q$
3. $\mathrm{Q}=\mathrm{n} \times$ Charge on 1 electron

When a steady current flows through a conductor, the electrons in it move with a certain average 'drift speed'.
4. If the current I , flowing in a metallic wire and the potential difference across its terminals is V .

Then potential difference, V , across the ends of a given metallic wire in an electric circuit is directly proportional to the current flowing through it, provided its temperature remains the same. This is called Ohm's law.
$\mathrm{V} \alpha \mathrm{I} \Rightarrow \mathrm{V}=\mathrm{RI} \quad$ or, $\mathrm{I}=\mathrm{V} / \mathrm{R}$
5. Resistance of the conductor depends (i) on its length, (ii) on its area of cross-section, (iii) on the nature of its material and (iv) temperature
$R \propto I / A \Rightarrow R=\rho I / A \quad$ Or, $\rho=R A / I$
6. If resistors joined in series: $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$ but $\mathrm{I}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}$

Then $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
6. If resistors joined in Parallel: $\mathrm{V}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$ but $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$

Then $1 / R=1 / R_{1}+1 / R_{2}+1 / R_{3}$
7. If a current I flowing through a resistor of resistance $R$. and the potential difference across is $V$ for time $t$ sec

Then, the work done in moving the charge Q through a potential difference V is $=\mathrm{W}=\mathrm{VQ}$.

But, Q = It
$\Rightarrow \mathrm{W}=\mathrm{VIt}$

Now, Power = work done / Time
$\Rightarrow \mathrm{P}=\mathrm{W} / \mathrm{t}$
\{or, $\mathrm{W}=\mathrm{Pt}$ [The energy supplied to the circuit by the source in time t is $\mathrm{P} \times \mathrm{t}=\mathrm{V} \mathrm{It}$ ]
$\Rightarrow \mathrm{P}=\mathrm{V}$ It $/ \mathrm{t}$ [ Using eq. (i) ]
$\Rightarrow \mathrm{P}=\mathrm{VI}$

The amount of heat produced in time $\mathrm{t}=\mathrm{H}$
$\Rightarrow \mathrm{H}=$ the energy supplied to the circuit by the source in time $\mathrm{t}=\mathrm{V}$ I t

Applying Ohm's law, V = IR
$\mathrm{H}=\mathrm{I}^{2} \mathrm{Rt}$

Note: heat produced in a resistor is
(i) Directly proportional to the square of current for a given resistance,
(ii) Directly proportional to resistance for a given current, and
(iii) Directly proportional to the time for which the current flows through the resistor.
8. Electric Power: The rate at which electric energy is dissipated or consumed in an electric circuit is called electric power.

The power P is given by $\mathrm{P}=\mathrm{VI} \quad$ Using, $\mathrm{V}=\mathrm{IR}$
$\Rightarrow \mathrm{P}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}$

Also using, V/R = I
$\Rightarrow P=V^{2} / R$
9. The commercial unit of electric energy is kilowatt hour (kW h) = 1 unit.
10. $1 \mathrm{~kW} \mathrm{~h}=1000$ watt $\times 3600$ second $=3.6 \times 10^{6}$ watt second $=3.6 \times 10^{6}$ joule ( J$)$

